• Title/Summary/Keyword: gas flow

Search Result 5,581, Processing Time 0.027 seconds

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Application of Remote Sensing Technology for Developing REDD+ Monitoring Systems (REDD+ 모니터링 시스템 구축을 위한 원격탐사기술의 활용방안)

  • Park, Taejin;Lee, Woo-Kyun;Jung, Raesun;Kim, Moon-Il;Kwon, Tae-Hyub
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.315-326
    • /
    • 2011
  • In recent years, domestic and international interests focus on climate change, and importance of forest as carbon sink have been also increased. Particularly REDD+ mechanism expanded from REDD (Reduced Emissions from Deforestation and Degradation) is expected to perform a new mechanism for reducing greenhouse gas in post 2012. To conduct this mechanism, countries which try to get a carbon credit have to certify effectiveness of their activities by MRV (Measuring, Reporting and Verification) system. This study analyzed the approaches for detecting land cover change and estimating carbon stock by remote sensing technology which is considered as the effective method to develop MRV system. The most appropriate remote sensing for detection of land cover change is optical medium resolution sensors and satellite SAR (Synthetic Aperture Radar) according to cost efficiency and uncertainty assessment. In case of estimating carbon stock, integration of low uncertainty techniques, airborne LiDAR (Light Detection and Ranging), SAR, and cost efficient techniques, optical medium resolution sensors and satellite SAR, could be more appropriate. However, due to absence of certificate authority, guideline, and standard of uncertainty, we should pay continuously our attention on international information flow and establish appropriate methods. Moreover, to apply monitoring system to developing countries, close collaboration and monitoring method reflected characteristics of each countries should be considered.

Analysis of Impacts of the Northeast Pacific Atmospheric Blocking and Contribution of Regional Transport to High-PM10 Haze Days in Korea (한국의 고농도 PM10 연무 사례일 발생에 대한 대기 블로킹의 영향과 장거리 수송 기여도 분석)

  • Jeong, Jae-Eun;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.77-90
    • /
    • 2022
  • Despite the decreasing trend of anthropogenic emissions in East Asia in recent years, haze days still frequently occur in spring. Atmospheric blocking, which occurs frequently in the northeastern Pacific, leads to persistent changes in large-scale circulation and blocks westerly flow in the East Asian region. During March 2019, frequent warm and stagnant synoptic meteorological conditions over East Asia were accompanied 6-7 days later by the Alaskan atmospheric blocking. The Alaskan atmospheric blocking over the period of March 18-24, 2019 led to high particulate matter (PM10) severe haze days exceeding a daily average of 50 ㎍ m-3 over the period of March 25-28, 2019 in South Korea. Although the high-PM10 severe haze days were caused by warm and stagnant meteorological conditions, the regional contribution of anthropogenic emissions in eastern China was calculated to be 30-40% using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The major regional contributions of PM10 aerosols in the period of high-PM10 severe haze days were as follows: nitrates, 20-25%; sulphates, 10-15%; ammonium, 5-10%; and other inorganics, 15-20%. Ammonium nitrate generated via gas-to-aerosol conversion in a warm and stagnant atmosphere largely contributed to the regional transport of PM10 aerosols in the high-PM10 severe haze days in South Korea.

Prediction of Change in Growth Rate of Algae in Jinhae Bay due to Cooling Water Discharge (냉배수 방류에 따른 진해만의 해조류 성장 속도 변화 예측)

  • Park, Seongsik;Yoon, Seokjin;Lee, In-Cheol;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.308-323
    • /
    • 2021
  • In this study, we aimed to evaluate the environmental changes in Jinhae Bay caused by cooling water using numerical modeling. Cooling water discharge volume from the results of Case 1 (10 m3 sec-1) showed that the environmental changes in Jinhae Bay were extremely insignificant throughout the study period. In the simulation conditions of Case 2 (100 m3 sec-1), there was a decrease in water temperature of approximately 1 - 3℃ within a 5 km radius from the discharge outlet. In Case 3 (1000 m3 sec-1), a decrease in water temperature of up to 4 - 5℃ was observed within a radius of 8 km from the discharge outlet and cooling water discharge spread throughout the Bay. Growth rate of microalgae decreased by up to 15 % in November, whereas it increased by up to 6 % near the Hangam Bay in Case 3. From the above results, we confirmed that the environmental changes in Jinhae Bay due to cooling water discharged from Tongyeong LNG station are extremely insignificant. Moreover, it is expected that cooling water discharge could be utilized as a counter measure for 'red tide bloom' or 'macroalgae growth'.

Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests (국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종)

  • Hanna, Chang;Jounga, Son;Juwan, Kim;Junhyuk, Kim;Yeongseong, Kim;Won-Sil, Choi;Young-Kyu, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.490-501
    • /
    • 2022
  • In this study, the isoprene and terpene emissions from 32 major urban tree species were investigated. We conducted sampling using a dynamic enclosure system between June and July 2021. Seedlings aged < three years were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air flow from the outlet of the chamber was sampled using Tenax-filled sorbent tubes under standard conditions (temperature: 30°C; PAR: 1,000 μmol/m2/sec). A thermal desorption gas chromatography/mass spectrometry system was used to analyze the following 38 biogenic volatile organic compounds: isoprene, monoterpenes, sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes. Isoprene emitters included Quercus mongolica, Salix koreensis, Robinia pseudoacacia, and Salix chaenomeloides. Monoterpene emitters included Pinus strobus, Cedrela sinensis, and Cercis chinensis. The monoterpene emission profiles were dominated by á-pinene, myrcene, camphene, and limonene. The predominant oxygenated monoterpene and oxygenated sesquiterpene were eucalyptol and caryophyllene oxide, respectively. For all species, the contributions of sesquiterpenes and oxygenated sesquiterpenes were relatively low.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Determination of bromine in 1000 ㎍/g Cl standard solution by ID-ICPMS (동위원소희석 질량분석법에 의한 1000 ㎍/g 염소 표준용액 중 브롬 불순물 분석)

  • Park, Chang Joon;Suh, Jung Kee;Song, Hyun Joo;Lee, Dong Soo
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The isotope dilution method was used for the determination of Br impurity in $1000{\mu}g/g$ Cl standard solution. Since relatively pure KCl salt was used for the preparation of the Cl standard solution, the Br impurity determination suffers from both spectral and non-spectral interferences due to the presence of a large amount of K and Cl matrices. AG2-X8 anion-exchange resin was employed to separate the Br analyte from the matrices, and RF power was raised to 1500 W and nebulizer gas flow rate was lowered to 0.77 L/min to reduce background from the $ArArH^+$ molecular ions. The Br impurity in the $1000{\mu}g/g$ Cl standard solution was determined to be 43.7 ng/g with the standard addition method. The analytical result was in good agreement with 41.2 ng/g (RSD 1.6%) determined by the isotope dilution method to lower uncertainty from poor reproducibility of the anion-exchange process.

Analysis of coenzyme Q10 in human plasma by high performance liquid chromatography (고성능액체크로마토그라피를 이용한 혈장 내 코엔자임 큐텐 분석)

  • Park, Yong-Sun;Park, Sang-Boem;Song, Sean-Mi;Kim, Yong-Woo;Lee, Kyoung-Ryul
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.514-518
    • /
    • 2009
  • Coenzyme $Q_{10}$($CoQ_{10}$), a vitamin E-like substance, represents a components of the complex antioxidant system of the human organism. $CoQ_{10}$ levels in human plasma were determined by high performance liquid chromatography (HPLC) with UV detection. It was dissociated from lipoproteins by methanol and extracted into n-hexane with liquid-liquid extraction procedure, after centrifugation, the supernatant was dried under nitrogen gas stream. The residue was dissolved in the absolute ethanol. Determination of $CoQ_{10}$ was performed on a $C_{18}$ reversed-phase analytical column with ultraviolet detection at 275 nm and the mobile phase containing 15% (v/v) ethanol in methanol at a flow rate of 1.7 mL/min. The low limit of quantitation was 0.02 mg/L (S/N=10), the linearity between the concentration and peak height is from 0.1 to 2.0 mg/L. Twenty-four randomly selected plasma samples from apparently healthy, 27 to 44 year old individuals (males and females) were analyzed for total $CoQ_{10}$. The average level in these subjects was $0.62{\pm}0.13mg/L$ with the range of 0.41-0.98 mg/L. This method has a specific and a sufficient limit of quantitation (LOQ) for analysis of $CoQ_{10}$ in human plasma in both a clinical study and research at laboratories.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.