DOI QR코드

DOI QR Code

Prediction of Change in Growth Rate of Algae in Jinhae Bay due to Cooling Water Discharge

냉배수 방류에 따른 진해만의 해조류 성장 속도 변화 예측

  • Park, Seongsik (Department of Ocean Engineering, Pukyong National University) ;
  • Yoon, Seokjin (Dokdo Fisheries Research Center, National Fisheries Research & Development Institute) ;
  • Lee, In-Cheol (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Byeong Kuk (Tongyeong Terminal Division, Korea Gas Corporation) ;
  • Kim, Kyunghoi (Department of Ocean Engineering, Pukyong National University)
  • 박성식 (부경대학교 해양공학과) ;
  • 윤석진 (국립수산과학원 독도수산연구센터) ;
  • 이인철 (부경대학교 해양공학과) ;
  • 김병국 (한국가스공사 안전환경부) ;
  • 김경회 (부경대학교 해양공학과)
  • Received : 2021.02.09
  • Accepted : 2021.04.27
  • Published : 2021.04.30

Abstract

In this study, we aimed to evaluate the environmental changes in Jinhae Bay caused by cooling water using numerical modeling. Cooling water discharge volume from the results of Case 1 (10 m3 sec-1) showed that the environmental changes in Jinhae Bay were extremely insignificant throughout the study period. In the simulation conditions of Case 2 (100 m3 sec-1), there was a decrease in water temperature of approximately 1 - 3℃ within a 5 km radius from the discharge outlet. In Case 3 (1000 m3 sec-1), a decrease in water temperature of up to 4 - 5℃ was observed within a radius of 8 km from the discharge outlet and cooling water discharge spread throughout the Bay. Growth rate of microalgae decreased by up to 15 % in November, whereas it increased by up to 6 % near the Hangam Bay in Case 3. From the above results, we confirmed that the environmental changes in Jinhae Bay due to cooling water discharged from Tongyeong LNG station are extremely insignificant. Moreover, it is expected that cooling water discharge could be utilized as a counter measure for 'red tide bloom' or 'macroalgae growth'.

통영 LNG 기지에서 방류되는 냉배수가 진해만에 미치는 영향을 알아보고, 냉배수의 활용 방안 모색을 위해 총 4개의 냉배수 방류량에 대한 진해만의 환경변화를 1년간(2018년) 모의하였다. 실제 냉배수 방류량인 Case1(10 m3 sec-1)의 모의 결과, 모든 분기에서 냉배수에 의한 진해만의 환경변화는 매우 미미하게 나타났다. 모의 방류량인 Case2(100 m3 sec-1)의 경우 방류구 반경 5 km 범위에서 1 ~ 3℃의 수온 감소를 보였으며, Case3(1000 m3 sec-1)에서는 방류구 반경 8 km 범위에서 최대 4 ~ 5℃의 수온이 감소하였고 진해만 전 해역에 걸쳐 냉배수가 확산하는 결과를 보였다. 플랑크톤의 성장 속도는 최대 15% 감소하였으며(11월), 대형조류의 성장 속도는 행암만 부근에서 최대 6 % 증가하는 결과를 보였다. 상기 결과로부터 통영 LNG 기지에서 방류되는 냉배수에 의한 진해만의 환경변화는 미미한 것을 확인하였다. 또한 Case3 결과로부터 국소지역의 '적조 방재', '해조류 성장'을 목적으로 냉배수의 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2021학년도 부경대학교 연구년 교원 지원사업에 의하여 연구되었음.

References

  1. Carlos, M. D., M. Nuria, K. J. Dorte, and S. C. Maria(2007), Testing the Predictive Power of Seagrass Depth Limit Models, Estuaries and Coasts, Vol. 30, pp. 652-656. https://doi.org/10.1007/BF02841962
  2. Dahl-Madsen, K. I., B. Moller, and B. H. Fenger(1976), Effects of Cooling Water Discharge on Primary Production and Composition of Bottom Fauna in a Fjord. In: Devik O. (eds) Harvesting Polluted Waters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4328-8_4.
  3. EPA(1985), Environmental Protection Agency, Rates, constants, and kinetics. In: Bowie GL, Mills WM, Porcellaet DB, Campbell CL and others (eds) Formulations in surface water quality modelling, 2nd edn. EPA, Atlanta, GA, pp. 188-204.
  4. Eppley, R. W.(1972), Temperature and phytoplankton growth in the sea, Fishery Bulletin, Vol. 70, pp. 1063-1085.
  5. Hashimoto, T. and H. Takeoka(1998), Analysis of Primary Production in the Seto Inland Sea, Japan, Using a Simple Ecosystem Model, Journal of Oceanography, Vol. 54, pp. 123-132. https://doi.org/10.1007/BF02751688
  6. Jorgensen, S. E., H. Mejer, and M. Friis(1978), Examination of a Lake Model, Ecol. Modeling, Vol. 4, pp. 253-278. https://doi.org/10.1016/0304-3800(78)90010-8
  7. Jung, D. W.(2013), A study on marine debris drift by numerical simulation in the south-eastern sea of Korea, M.S. thesis, Dept. Ocean Industrial Eng., Pukyong National Univ., Busan, South Korea.
  8. Kawamiya, M., M. J. Kishi, Y. Yamanaka, and N. Suginohara(1995), An ecological-physical coupled model applied to Station Papa, J. Oceanogr., Vol. 51, pp. 635-664. https://doi.org/10.1007/BF02235457
  9. KHOA(2018), Real-time maritime observation information system, http://www.khoa.go.kr/oceangrid/koofs/kor/tide/tbm.do.
  10. Kim, J. K. and J. H. Kim(2001), Diffusion Modelling of Cold Discharge on Coastal waters, Jour. Fish. Mar. Sci. Edu., Vol. 13, pp. 132-145.
  11. Kim, K. M.(2011), Structure of Phytoplankton Community by Cold Discharge in the Western Jinhae Bay, M.S. thesis, Dept. Fisheries Biology, Pukyong National Univ., Busan, South Korea.
  12. Kim, S. J.(2000), Effects of Cold Discharge on Marine Ecosystems, J. Ins. Marine Inudstry, Vol. 13, pp. 20-31.
  13. KMA(2018), Automated Synoptic Observing System(ASOS), https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36.
  14. Madala, R. V. and S. A. Piacsek(1977), A semi-implicit numerical model for baroclinic oceans, J. Comput. Phys., Vol. 23, pp. 167-178. https://doi.org/10.1016/0021-9991(77)90119-X
  15. MEIS(2018), Marine Environment Observation & Survey, https://www.meis.go.kr/mei/observe/port.do.
  16. Mellor, G. L.(2002), Users Guide for a Three-dimensional, Primitive Equation, Numerical Ocean Model, Princeton University,
  17. Paik, S. G. and S. G. Yun(2000), Community Structure of the Macrobenthos in Chinhae Bay, Korea, J. Korean Fish. Soc., Vol. 33, pp. 572-580.
  18. Petrell, R. J., K. M. Tabrizi, P. J. Harrison, and L. D. Druehl(1993), Mathematical model of Laminaria production near a British Columbian salmon sea cage farm, J. Appl Phycol, Vol. 5, pp. 1-14. https://doi.org/10.1007/BF02182416
  19. Simons, T. J.(1974), Verification of numerical models of Lake Ontario. Part I, circulation in spring and early summer, J. Phys. Oceanogr., Vol. 4, pp. 507-523. https://doi.org/10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2
  20. Tseng, C. K., K. Y. Sun, and C. Y. Wu(1955), Studies on fertilizer application in the cultivation of Haitai (Laminaria japonica Areseh), Acta Bot Sin, Vol. 4, pp. 374-392.
  21. Willmott, C. J.(1981), On the Validation of Models, Phys. Geogr., Vol. 2, pp. 184-194. https://doi.org/10.1080/02723646.1981.10642213
  22. Xue, H., F. Chai, and N. R. Pettigrew(2000), A model study of the seasonal circulation in the Gulf of Maine, J. Phys. Oceanogr, Vol. 30, pp. 1111-1133. https://doi.org/10.1175/1520-0485(2000)030<1111:AMSOTS>2.0.CO;2
  23. Yoon, S. and A. Kasai(2017), Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay, Estuarine, Coastal and Shelf Science, Vol. 198, pp. 225-235. https://doi.org/10.1016/j.ecss.2017.09.017
  24. Zhang, J., W. Wu, J. S. Ren, and F. Lin(2016), A model for the growth of mariculture kelp Saccharina japonica in Sanggiu Bay, China, Aquaculture Environment Interactions, Vol. 8, pp. 273-283. https://doi.org/10.3354/aei00171