Browse > Article
http://dx.doi.org/10.5467/JKESS.2022.43.1.77

Analysis of Impacts of the Northeast Pacific Atmospheric Blocking and Contribution of Regional Transport to High-PM10 Haze Days in Korea  

Jeong, Jae-Eun (Department of Earth Science Education, Korean National University of Education)
Cho, Jae-Hee (Department of Earth Science Education, Korean National University of Education)
Kim, Hak-Sung (Department of Earth Science Education, Korean National University of Education)
Publication Information
Journal of the Korean earth science society / v.43, no.1, 2022 , pp. 77-90 More about this Journal
Abstract
Despite the decreasing trend of anthropogenic emissions in East Asia in recent years, haze days still frequently occur in spring. Atmospheric blocking, which occurs frequently in the northeastern Pacific, leads to persistent changes in large-scale circulation and blocks westerly flow in the East Asian region. During March 2019, frequent warm and stagnant synoptic meteorological conditions over East Asia were accompanied 6-7 days later by the Alaskan atmospheric blocking. The Alaskan atmospheric blocking over the period of March 18-24, 2019 led to high particulate matter (PM10) severe haze days exceeding a daily average of 50 ㎍ m-3 over the period of March 25-28, 2019 in South Korea. Although the high-PM10 severe haze days were caused by warm and stagnant meteorological conditions, the regional contribution of anthropogenic emissions in eastern China was calculated to be 30-40% using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The major regional contributions of PM10 aerosols in the period of high-PM10 severe haze days were as follows: nitrates, 20-25%; sulphates, 10-15%; ammonium, 5-10%; and other inorganics, 15-20%. Ammonium nitrate generated via gas-to-aerosol conversion in a warm and stagnant atmosphere largely contributed to the regional transport of PM10 aerosols in the high-PM10 severe haze days in South Korea.
Keywords
atmospheric blocking; high-$PM_{10}$ haze days; regional contribution; WRF-Chem model; ammonium nitrate;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kim, Y.P. and Lee, G., 2018, Trend of air quality in Seoul: policy and science. Aerosol and Air Quality Research, 18, 2141-2156, doi:10.4209/aaqr.2018.03.0081.   DOI
2 Barriopedro, D,, Garcia-Herrera, R., Lupo, A.R., and Hernandez, E., 2006, A climatology of northern hemisphere blocking. Journal of Climate, 19, 1042-1063, doi:10.1175/JCLI3678.1.   DOI
3 Choi, J.-W., Cha, Y.-M., Kang, S.-D., Kim, H.-D., and Kim, B.-J., 2013, Influence of the Arctic Oscillation on the TC activity around Taiwan. Theoretical and Applied Climatology, 116, 695-706, doi:10.1007/s00704-013-0983-0.   DOI
4 De Meij, A., Bossioli, E., Vinuesa, J.F., Penard, C., and Price, I., 2015, The effect of SRTM and corine land cover on calculated gas and PM10 concentrations in WRF-Chem. Atmospheric Environment, 101, 177-193, doi:10.1016/j.atmosenv.2014.11.033.   DOI
5 Kim, H., Zhang, Q., and Sun, Y., 2020a, Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019. Atmospheric Chemistry and Physics, 20, 11527-11550, doi:10.5194/acp-20-11527-2020.   DOI
6 Bae, M., Kim, B.-U., Kim, H.-C., and Kim, S., 2020, A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11, 141, doi:10.3390/atmos11020141.   DOI
7 Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., and Kloster, S., 2010, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43-67, doi:10.5194/gmd-3-43-2010.   DOI
8 Chen, D., Qiao, S., Zhu, X., Cheung, H.N., Freychet, N., Hao, X., Tang, S., and Feng, G., 2021, Anthropogenic influence on Northern Hemisphere blocking during the winter 1960/1961-2012/2013. Environmental Research Letters, 16, 094029, doi:10.1088/1748-9326/ac1d0e.   DOI
9 Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatiotemporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere and Health, 14, 1001-1016, doi:10.1007/s11869-021-00995-y.   DOI
10 Choi, W. and Kim, Y.A., 2016, Relationship between the East-Asian cold anomalies in winter of 2010/11 and blocking. Atmosphere, 26. 193-201, doi:10.14191/Atmos.2016.26.1.193. (in Korean)   DOI
11 Gao, Y., Liu, X., Zhao, C., and Zhang, M., 2011, Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic games. Atmospheric Chemistry and Physics, 11, 12437-12451, doi:10.5194/acp-11-12437-2011.   DOI
12 Grell, G.A. and Devenyi, D., 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophysical Research Letters, 29. 1693, doi:10.1029/2002GL015311.   DOI
13 Nam, K.-P., Lee, D.-G., and Jang, L.-S., 2019, Analysis of PM2.5 concentration and contribution characteristics in South Korea according to seasonal weather patternsin East Asia: Focusing on the intensive measurement periodsin 2015. Journal of Environmental Impact Assessment, 28, 183-200, doi:10.14249/EIA.2019.28.3.183.   DOI
14 Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R., Badia, A., Balzarini, A., Baro, R., Chemel, C., Curci, G., Forkel, R., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J.J.P., Makar, P.A., Manders-Groot, A., Neal, L., Perez, J.L., Pirovano, G., Pouliot, G., San J.R., Savage, N., Schroder, W., Sokhi, R.S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., and Galmarini, S., 2015, Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2. Atmospheric Environment, 115, 371-388, doi:10.1016/j.atmosenv.2015.02.034.   DOI
15 He, S., Gao, Y., Li, F., Wang, H., and He, Y., 2017, Impact of arctic oscillation on the East Asian climate: A review. Earth-Science Reviews, 164, 48-62, doi:10.1016/j.earscirev.2016.10.014.   DOI
16 Lee, Y.G., Ho, C.H., Kim, J.H., and Kim, J., 2015, Quiescence of Asian dust events in South Korea and Japan during 2012 spring: Dust outbreaks and transports. Atmospheric Environment 114, 92-101, doi:10.1016/j.atmosenv.2015.05.035.   DOI
17 Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E., 2020, Environmental and health impacts of air pollution: A review. Frontiers in Public Health 8, 14, doi:10.3389/fpubh.2020.00014.   DOI
18 Robarge, W.P., Walker, J.T., McCulloch, R.B., and Murray, G., 2002, Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United Sates. Atmospheric Environment. 36, 1661-1674, doi:10.1016/S1352-2310(02)00171-1.   DOI
19 Morrison, H., Curry, J.A., and Khvorostyanov, V.I., 2005, A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences, 62, 1665-1677, doi:10.1175/JAS3446.1.   DOI
20 Streets, D.G., Fu, J.S., Jang, C.J., Hao, J., He, K., Tang, X., Zhang, Y., Wang, Z., Li, Z., Zhang, Q., Wang, L., Wang, B., and Yu, C., 2007, Air quality during the 2008 Beijing Olympic Games. Atmospheric Environment, 41, 480-492, doi:10.1016/j.atmosenv. 2006.08.046.   DOI
21 Hong, S.Y., Yign, N., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341, doi:10.1175/MWR3199.1.   DOI
22 Tibaldi, S. and Molteni, F., 1990, On the operational predictability of blocking. Tellus A: Dynamic Meteorology and Oceanography 42, 343-365, doi:10.3402/tellusa.v42i3.11882.   DOI
23 Park, Y.-J. and Ahn, J.-B., 2014, Characteristics of atmospheric circulation over East Asia associated with summer blocking, Journal of Geophysical Research: Atmospheres, 119, 726-738, doi:10.1002/2013JD020688.   DOI
24 Roh, J.W., Cho, H.O., Son, S.W., Back, H.J., Boo, K.O., and Lee, J.K., 2018, Predictability of northern hemisphere blocking in the KMA GDAPS during 2016- 2017. Atmosphere, 28, 403-414, doi:10.14191/Atmos.2018.28.4.403.   DOI
25 Skamarock, W.C. and Klemp, J.B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227, 3465-3485, doi:0.1016/j.jcp.2007.01.037.   DOI
26 Wang, W. and Fang, Z.Y., 2006, Numerical simulation and synoptic analysis of dust emission and transport in East Asia. Global and Planetary Change, 52, 57-70, doi:10.1016/j.gloplacha.2006.02.004.   DOI
27 Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J., Orlando, J.J., and Soja, A.J., 2011, The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development. 4, 625-641, doi:10.5194/gmd-4-625-2011.   DOI
28 Yun, S., and Yoo, C., 2019, The effects of spring and winter blocking on PM10 concentration in Korea. Atmosphere 10, 410, doi:10.3390/atmos10070410.   DOI
29 Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., and Park, R.J., 2012, Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. Journal of Geophysical Research: Atmospheres, 117, D03303, doi:10.1029/2011JD016302.   DOI
30 Wu, B. and Wang, J., 2002, Winter Arctic oscillation, Siberian High and East Asian Winter Monsoon. Geophysical Research Letters, 29, 1-4, doi:0.1029/2002GL015373.
31 Zhou, Y., Yue, Y., Bai, Y., and Zhang, L., 2020, Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Advances in Meteorology, 2020, 1-10, doi:10.1155/2020/2398146.   DOI
32 Yun, M.S., Koo, Y.S., and Jung O.J., 2014, Analysis of sensitivity to prediction of particulate matters and related meteorological fields using the WRF-Chem model during Asian dust episode days. Journal of the Korean Earth Science Society, 35, 1-18, doi:10.5467/JKESS.2014.35.1.1. (in Korean)   DOI
33 Zaveri, R.A., Easter, R.C., Fast, J.D., and Peters, L.K., 2008, Model for simulating aerosol interactions and chemistry (MOSAIC). Journal of Geophysical Research, 113, D13204, doi:10.1029/2007JD008782.   DOI
34 Huo, H., Zheng, B., Wang, M., Zhang, Q., and He, K.B., 2015, Vehicular air pollutant emissions in China: Evaluation of past control policies and future perspectives. Mitigation and Adaptation Strategies for Global Change, 20, 719-733, doi:10.1007/s11027-014-9613-0.   DOI
35 Jung, O.J. and Moon, Y.S., 2015, A study on prediction of Asian dusts using the WRF-Chem model in 2010 in the Korean Peninsula. Journal of the Korean Earth Science Society, 36, 90-108, doi:10.5467/JKESS.2015.36.1.90. (in Korean)   DOI
36 Yeo, M.J. and Kim, Y.P., 2020, Long-term Trend of Sulfur Dioxide Concentration by District in Korea. Journal of Korean Society for Atmospheric Environment, 36, 742-756, doi:10.5572/KOSAE.2020.36.6.742. (in Korean)   DOI
37 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmuller, R., Denier van der Gon, H., Kuenen, J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M., 2015, HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics. 15, 11411-11432, doi:10.5194/acp-15-11411-2015.   DOI
38 Kang, J.Y., Kim, S.W., and Yoon, S.C., 2012, Estimation of dust emission schemes and input parameters in wintertime Asian dust simulation: A case study of winter dust event on December 29, 2007. Journal of Korean Society for Atmospheric Environment, 28, 1-11, doi:10.5572/KOSAE.2012.28.1.001. (in Korean)   DOI
39 Kim, M.G., Lee, S.J., Park, D., Kim, C., Lee, K., and Hwang, J., 2020b, Relationship between the actual fine dust concentration and media exposure that influenced the changes in outdoor activity behavior in South Korea. Scientific Reports, 10, 12006, doi:10.1038/s41598-020-68580-4.   DOI
40 Li, Z., Tao, W., Mengyao, L., and Qiang, Z., 2015, On the severe haze in Beijing during January 2013: Unraveling the effects of meteorological anomalies with WRFChem. Atmospheric Environment, 104, 11-21, doi:10.1016/j.atmosenv.2015.01.001.   DOI
41 Davini, P. and D'Andrea, F., 2016, Northern hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements?. Journal of Climate, 29, 8823-8840, doi:10.1175/JCLI-D-16-0242.1.   DOI
42 Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., and Wang, X., 2012, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492, doi:10.5194/gmd-5-1471-2012.   DOI
43 Sun, Y., Zhou, X., Wai, K.M., Yuan, Q., Xu, Z., Zhou, S., Qi, Q., and Wang, W., 2013, Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: Implication of source contribution. Atmospheric Research, 134, 24-34, doi:10.1016/j.atmosres.2013.07. 011.   DOI
44 Liu, Z., Shen, L., Yan C., Du J., Li Y., and Zhao, H., 2020, Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere. Advances in Meteorology, 2020, 1-13, doi:10.1155/2020/5039613.   DOI
45 Mao, R., Ho, C.H., Shao, Y., Gong, D.Y., and Kim, J., 2011, Influence of Arctic Oscillation on dust activity over northeast Asia. Atmospheric Environment 45, 3226-337, doi:10.1016/j.atmosenv.2010.10.020.   DOI
46 Mlawer, E.J., Taubman, S., Brown, P., Iacono, M., and Clough, S., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, avalidated correlated-k model for the long-wave, Journal of Geophysical Research, 102, 16663-16682, doi:10.1029/97JD00237.   DOI