• Title/Summary/Keyword: gas film

Search Result 2,507, Processing Time 0.033 seconds

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

XPS Analysis of Acrylic Acid Films Polymerized by Remote Plasma-Enhanced Chemical Vapor Deposition (원격 플라즈마 화학기상증착법에 의해 중합된 아크릴산 필름의 XPS 분석)

  • Kim, Seonghoon;Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.536-541
    • /
    • 2009
  • Plasma-polymerized acrylic acid films were deposited on Si wafer and KBr pellet by remote plasma-enhanced chemical vapor deposition (PECVD). Effects of plasma power, reaction pressure, indirect plasma method on the growth rate, chemical structure, and chemical bonding state of the films were investigated. Chemical structure and chemical state of the films were characterized by Fourier transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis and curve fitting technique. Growth rate of the film increased to a saturation value with plasma power of 100 W, but showed the maximum with reaction pressure at 300 mtorr. Whenever W/FM factor (applied energy per gas molecule) increased by increasing plasma power or lowering pressure, the fragmentation of acrylic acid molecules was promoted. From the XPS curve fitting analyses, we found that the intensity of carboxyl COO bonding peak decreased with W/FM factor, and the tendency of intensity change of carboxylic COO peak was contrary to those of ether C-O and carbonyl C=O peaks.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

Effect of Ultrathin Film HfO2 by Atomic Layer Deposition on the Propreties of ZnS:Cu,Cl Phosphors (ZnS:Cu,Cl 형광체의 특성에 미치는 원자층 증착 초박막 HfO2의 영향)

  • Kim, Min-Wan;Han, Sand-Do;Kim, Hyung-Su;Kim, Hyug-Jong;Kim, Hyu-Suk;Kim, Suk-Whan;Lee, Sang-Woo;Choi, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.248-252
    • /
    • 2006
  • An investigation is reported on the coating of ZnS:Cu,Cl phosphors by $HfO_2$ using atomic layer deposition method. Hafnium oxide films were prepared at the chamber temperature of $280^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors and reactant gas, respectively. XPS and ICP-MS analysis showed the surface composition of coated phosphor powder was hafnium oxide. In FE-SEM analysis, the surface morphology of uncoated phosphors became smoother and clearer as the number of ALD cycle increased from 900 to 1800. The photoluminescence intensity for coated phosphors showed $7.3{\sim}13.4%$ higher than that of uncoated. The effect means that the reactive surface is uniformly coated with stable hafnium oxide to reduce the dead surface layer without change of bulk properties and also its absorptance is almost negligible due to ultrathin(nano-scaled) films. The growth rate is about $1.1{\AA}/cycle$.

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum (이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성)

  • Hwang, Ji Sub;Yun, Hee-Sun;Jang, Yoon Hee;Lee, Jang mi;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer (보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향)

  • Jung, Young-Chul;Jun, Bon-Keun;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.389-395
    • /
    • 2000
  • In this paper, we propose the formation of an $Al_2O_3$ pre-layer using a protective Si-oxide layer and Al layer. Deposition of a thin film layer of aluminum onto a Si surface covered with a thin Si-oxide layer and annealing at $800^{\circ}C$ led to the growth of epitaxial $Al_2O_3$ layer on Si(111). And ${\gamma}-Al_2O_3$ layer was grown on the $Al_2O_3$ per-layer. Etching of the Si substrate by $N_2O$ gas could be avoided in the initial growth stage by the $Al_2O_3$ pre-layer. It was confirmed that the $Al_2O_3$ pre-layer was effective in improving the surface morphology of the very thin ${\gamma}-Al_2O_3$ films.

  • PDF

Characteristics of the Silicon Epitaxial Films Grown by RTCVD Method (RTCVD 법으로 성장한 실리콘 에피막의 특성)

  • Chung, W.J.;Kwon, Y.K.;Bae, Y.H.;Kim, K.I.;Kang, B.K.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.63-70
    • /
    • 1996
  • Silicon epitaxial films of submicron level were successfully grown by the RTCVD method. For the growth of silicon epitaxial layers, $SiH_{2}Cl_{2}\;/\;H_{2}$ gas mixtures and various process parameters including $H_{2}$ prebake process were used. The growth conditions were varied to investigate their effects on the interface abruptness of doping profile, the film growth rates and crystalline properties. The crystallinity of the undoped silicon was excellent at the growth temperature of $900^{\circ}C$. The doping profiles were measured by SIMS technique. The abruptness of doping profile would be controlled within about $200{\AA}/decade$ in the structure of undoped Si / $n^{+}-Si$ substrate.

  • PDF

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

Characteristics of Diamond Like Carbon Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition Method with Gas Flow Rate and Radio Frequency Power (가스 유량과 RF Power에 따라 PECVD 방법으로 증착된 DLC 박막의 특성)

  • Jeong, Seon-Yeong;Kim, Hyeon-Gi;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.88-88
    • /
    • 2018
  • DLC(Diamond Like Carbon) 박막은 높은 열전도도, 큰 전기저항, 높은 강도 등의 다이아몬드와 유사한 특성을 가지고 있으면서 저온 저압에서도 합성이 가능하고, 합성 조건에 따라 물리 화학적 특성도 넓게 조절 할 수 있으며 상대적으로 넓은 면적에서 균일하고 평활한 박막의 합성이 가능하여 산업적 응용 면에서도 경쟁력을 갖추고 있다[1]. 이러한 DLC 박막을 합성함에 있어서 RF-PECVD(Radio Frequency Plasma Enhanced Chemical Vapor Deposition) 방법은 PECVD 방법 중 가장 보편적으로 사용되고 또 캐패시터 타입의 RF-PECVD 방법은 균일한 대면적 증착과 대량생산이 가능하다[1,2]. 본 연구에서는 우수한 특성을 갖는 DLC 박막의 증착 조건을 찾기 위해 캐패시터 타입의 RF-PECVD를 사용하여 공정 가스의 유량과 RF Power를 변화하여 박막을 증착하고, 증착된 박막의 특성을 연구하였다. DLC 박막은 ITO(Indium Tin Oxide) 유리 기판 위에 $100^{\circ}C$에서 5 min 동안 아세틸렌($C_2H_2$) 가스를 사용하여 가스 유량과 RF Power를 변화하여 증착하였다. 증착된 DLC 박막의 특성은 투과도, 평탄도, 두께를 측정하여 비교하였다. 가시광선 영역(380-780 nm)에서 투과도를 측정한 결과 ITO 유리 기판을 기준으로 한 DLC 박막의 투과도는 가시광선 영역 평균 94.8~98.8% 사이의 값으로 매우 높은 투과율을 나타내었다. 투과도는 가스 유량이 증가함에 따라 증가하는 경향을 나타내었고, RF Power의 변화에는 특정한 변화를 나타내지 않았다. 박막의 평탄도($R_a$, $R_{rms}$)와 두께는 AFM(Atomic Force Microscope)을 사용하여 측정하였다. 평탄도 $R_{rms}$는 0.8~3.3 nm, $R_a$는 0.6~2.5 nm 사이를 나타내었고 RF Power와 가스 유량의 변화에 따른 경향성을 나타내지는 않았다. 두께는 RF Power 25 W에서 55 W로 증가함에 따라 증가하는 경향을 나타내었으나 70W에서는 가스의 유량에 따라 상이한 결과를 나타내었다.

  • PDF

a-C:H Films Deposited in the Plasma of Surface Spark Discharge at Atmospheric Pressure. Part I: Experimental Investigation

  • Chun, Hui-Gon;K.V. Oskomov;N.S. Sochungov;Lee, Jing-Hyuk;You, Yong-Zoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.357-363
    • /
    • 2003
  • The aim of this work is the synthesis of a-C:H films from methane gas using surface spark discharge at the atmospheric pressure. Properties of these films have been investigated as functions of energy W delivered per a methane molecule in the discharge. The method enables the coatings to be deposited with high growth rates (up to $100 \mu\textrm{m}$/hour) onto large-area substrates. It is shown that the films consist of spherical granules with diameter of 20∼50 nm formed in the spark channel and then deposited onto the substrate. The best film characteristics such as minimum hydrogen-to-carbon atoms ratio H/C=0.69, maximum hardness $H_{v}$ =3 ㎬, the most dense packing of the granules and highest scratch resistance has been obtained under the condition of highest energy W of 40 eV. The deposited a-C:H coatings were found to be more soft and hydrogenated compared to the diamond-like hydrogenated (a-C:H) films which obtained by traditional plasmaenhanced chemical vapor deposition methods at low pressure (<10 Torr). Nevertheless, these coatings can be potentially used for scratch protection of soft plastic materials since they are of an order harder than plastics but still transparent (the absorption coefficient is about $10^4$$10^{5}$ $m^{-1}$ At the same time the proposed method for fast deposition of a-C:H films makes this process less expensive compared to the conventional techniques. This advantage can widen the application field of. these films substantially.y.