Browse > Article

XPS Analysis of Acrylic Acid Films Polymerized by Remote Plasma-Enhanced Chemical Vapor Deposition  

Kim, Seonghoon (Division of Applied Science, Cheongju University)
Seomoon, Kyu (Department of Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.5, 2009 , pp. 536-541 More about this Journal
Abstract
Plasma-polymerized acrylic acid films were deposited on Si wafer and KBr pellet by remote plasma-enhanced chemical vapor deposition (PECVD). Effects of plasma power, reaction pressure, indirect plasma method on the growth rate, chemical structure, and chemical bonding state of the films were investigated. Chemical structure and chemical state of the films were characterized by Fourier transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis and curve fitting technique. Growth rate of the film increased to a saturation value with plasma power of 100 W, but showed the maximum with reaction pressure at 300 mtorr. Whenever W/FM factor (applied energy per gas molecule) increased by increasing plasma power or lowering pressure, the fragmentation of acrylic acid molecules was promoted. From the XPS curve fitting analyses, we found that the intensity of carboxyl COO bonding peak decreased with W/FM factor, and the tendency of intensity change of carboxylic COO peak was contrary to those of ether C-O and carbonyl C=O peaks.
Keywords
remote PECVD; acrylic acid; XPS; curve fitting;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. X. Sun, L. Zhang, H. Chai, and H. L. Chen, Desalination, 192, 271 (2006)   DOI   ScienceOn
2 Q. Lv, C. Cao, and H. Zhu, J. Mater. Sci.: Mater. in Med., 15, 607 (2004)   DOI   ScienceOn
3 S. Cho and M. Dhayal, J. Biomed. Nanotechnol., 2, 137 (2006)   DOI   ScienceOn
4 Y. Yamada, T. Yamada, S. Tasaka, and N. Inagaki, Macromolecules, 29, 4331 (1996)   DOI   ScienceOn
5 N. Morosoff, B. Crist, M. Bumgarner, T. Hsu, and H. Yasuda, J. Macromol. Sci. Chem., A, 10, 451 (1976)   DOI   ScienceOn
6 F. Palumbo, P. Favia, A. Rinaldi. M. Vulpio, and R. d'Agostino, Plasmas Polym., 4, 133 (1999)   DOI   ScienceOn
7 S. N. Hwang, B. J. Jeon, and I. H. Jung, J. Korean Ind. & Eng. Chem., 9, 383 (1998)
8 M. Dhayal, J. Vac. Sci. Technol. A., 24, 1751 (2006)   DOI   ScienceOn
9 B. Gupta, J. G. Hilborn, I. Bisson, and P. Frey, J. Appl. Polym. Sci., 81, 2993 (2001)   DOI   ScienceOn
10 H. Yasuda, Plasma Polymerization, Academic Press, Orlando (1997)
11 S. Subramanian and S. G. Lee, J. Appl. Polym. Sci., 70, 1001 (1998)   DOI   ScienceOn
12 F. Rossi, F. Bretagnol, A. Valsesia, and P. Colpo, Eur. Phys. J. Appl. Phys., 43, 277 (2008)   DOI   ScienceOn
13 D. L. Cho, P. M. Claesson, C-G. Golander, and K. Johansson, J. Appl. Polym. Sci., 41, 1373 (1990)   DOI
14 D. Shi, P. He, J. Lian, L. Wang, and W. J. van Ooij, J. Mater. Res., 17, 2555 (2002)   DOI   ScienceOn
15 C. Vilani, D. E. Weibel, R. R. M. Zamora, A. C. Habert, and C. A. Achete, Appl. Surf. Sci., 254. 131 (2007)   DOI   ScienceOn