Browse > Article
http://dx.doi.org/10.21218/CPR.2020.8.2.045

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum  

Hwang, Ji Sub (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
Yun, Hee-Sun (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
Jang, Yoon Hee (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
Lee, Jang mi (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
Lee, Doh-Kwon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Current Photovoltaic Research / v.8, no.2, 2020 , pp. 45-49 More about this Journal
Abstract
Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.
Keywords
Molybdenum thin film; CISe; Non-vacuum process; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Simi, N. J., Kuriakose, L., Vinayakan, R., Ison, V. V., "$CuInS_2-In_2Se_3$ quantum dots - a novel material via a green synthesis approach," RSC Advances, Vol. 8, pp. 37146-37150, 2018.   DOI
2 Kim, S., Kang, M., Kim, S., Heo, J. H., Noh, J. H., Im, S. H., Seok, S. I., Kim, S. W., “Fabrication of $CuInTe_2$ and $CuInTe_{2-x}Se_x$ Ternary Gradient Quantum Dots and Their Application to Solar Cells,” ACS Nano, Vol. 7, No. 6, pp. 4756-4763, 2016.   DOI
3 Kim, K., Ahn, S. K., Choi, J. H., Yoo, J., Eo, Y. J., Cho, J. S., Cho, A., Gwak, J., Song, S., Cho, D. H., Chung, Y. D., Yun, J. H., "Highly efficient Ag-alloyed Cu(In,Ga)$Se_2$ solar cells with wide bandgaps and their application to chalcopyrite- based tandem solar cells," Nano Energy, Vol. 48, pp. 345-352, 2018.   DOI
4 Liyanage, W. P. R., Nath, M., "$CuInSe_2$ nanotube arrays for efficient solar energy conversion," Scientific Reports, Vol. 9, pp. 16751-16760, 2019.   DOI
5 Kesslera, F., Rudmann, D., "Technological aspects of flexible CIGS solar cells and modules," Solar Energy, Vol. 77, pp. 685-695, 2004.   DOI
6 Forest, R. V., Eser, E., Mccandless, B. E., Birkmire, R. W., Chen, J. G., “Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass,” AIChE Journal, Vol. 60, No. 6, pp. 2365-2372, 2014.   DOI
7 Goossens, A., Hofhuis, J., "Spray-deposited $CuInS_2$ solar cells," Nanotechnology, Vol. 19, No. 42, pp. 424018-424025, 2008.   DOI
8 Scofield, J. H., Dudaa, A., Albin, D., Ballard, B. L., Predecki, P. K., "Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells," Thin Solid Films, Vol. 260, pp. 26-31, 1995.   DOI
9 Jingxue, F., Zhao, W., Wei, W., Ye, Y., Lin, Z., Xin, W., Ruijiang, H., Hui, S., Chen, M. Z. Q., "Preparation and opimization of a molybdenum electrode for CIGS solar cells," AIP Advances, Vol. 6, pp. 5210-5218, 2016.
10 Khoshsirat, N., Ali, F., Tiong, V. T., Amjadipour, M., Wang, H., Shafiei, M., Motta, N., "Optimization of Mo/Cr bilayer back contacts for thin-film solar cells," Beilstein Journal of Nanotechnoogy, Vol. 9, pp. 2700-2707, 2018.   DOI
11 Salome, P. M. P., Malaquias, J., Fernandes, P. A., Da Cunha, A. F., "Mo bilayer for thin film photovoltaics Revisited," Journal of Physics D: Applied Physics, Vol. 43, pp. 5501-5507, 2010.
12 Roger, C., Noel, S., Sicardy, O., Faucherand, P., Grenet, L., Karst, N., Fournier, H., Roux, F., Ducroquet, F., Brioude, A., Perraud, S., "Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)$Se_2$ solar cells on Ti foils," Thin Solid Films, Vol. 548, pp. 608-616, 2013.   DOI
13 Wang, Z., Kuk, S., Kim, W. M., Jeong, J.-H., Hwang, D. J.,"Picosecond laser scribing of bilayer molybdenum thin films on flexible polyimide substrate," Applied Surface Science, Vol. 493, pp. 320-330, 2019.   DOI
14 Chai, Y., Su, S., Yan, D., Ozkan, M., Lake, R., Ozkan, C. S., "Strain gated bilayer molybdenum disulfide field effect transistor with edge contacts," Scientific Reports, Vol. 7, pp. 41593-41602, 2017.   DOI
15 Yamaguchi, T., Miyagawa, R., “Effects of oxygen on the properties of sputtered molybdenum thin films,” Japanese Journal of Applied Physics, Vol. 30, No. 9A, pp. 2069-2073, 1991.   DOI
16 Bollero, A., Andres, M., Garcia, C., Abajo, J., Gutierrez, M. T., “Morphological, electrical and optical properties of sputtered Mo thin films on flexible substrates,” Phys. Status Solidi A, Vol. 205, No. 3, pp. 540-546, 2009.
17 Heinss, J. P., Handel, F., Meyer, T., Wurz, R., "High productive deposited Mo layers for back ohmic contacts of solar cells," Plasma Processes and Polymers, Vol. 6, pp. S29-S35, 2009.   DOI