• Title/Summary/Keyword: gamma aminobutyric acid

Search Result 372, Processing Time 0.02 seconds

Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex

  • Joo, Kayoung;Yoon, Shin Hee;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • Phasic and tonic ${\gamma}$-aminobutyric acidA ($GABA_A$) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the $GABA_A$ receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular $Ca^{2+}$ and $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via $Ca^{2+}$ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.

Aggression and Neurotransmitters (공격성과 신경전달물질)

  • Yu, Si Young;Choi, Yejee;Kim, Sangjoon;Jeong, Hyeonseok S.;Ma, Jiyoung;Kim, Young Hoon;Moon, Sohyeon;Kang, Ilhyang;Jeong, Eujin;Suh, Chae Won;Shin, Kyung-Shik;Kim, Jieun E.
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.3
    • /
    • pp.108-115
    • /
    • 2016
  • Aggression and aggressive behaviors, often explained as harmful social interaction with the intention of hurting or inflicting damage upon another, have been considered as an adaptive mechanism from the evolutionary psychological point of view. However, various studies on aggression and aggressive behaviors have been done with psychopathological approach as the extreme aggressive behaviors may harm themselves and others at the same time. Recently, researchers have attempted to explain aggression in terms of neurobiological substrates rather than based on traditional psychopathological and/or behavioral concept. In this regard, there have been findings of differences in neurotransmitters and their receptors, and genetic polymorphisms. In this review article, we provide a brief overview of the literature about seven most frequently reported neurotransmitters including neurohormones (serotonin, norepinephrine, dopamine, gamma-aminobutyric acid, nitric oxide, oxytocin and vasopressin) and an associated enzyme (monoamine oxidase A), which are known to be related with aggression and aggressive behaviors.

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Administration of Alphas1-Casein Hydrolysate Increases Sleep and Modulates GABAA Receptor Subunit Expression

  • Yayeh, Taddesse;Leem, Yea-Hyun;Kim, Kyung-Mi;Jung, Jae-Chul;Schwarz, Jessica;Oh, Ki-Wan;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.268-273
    • /
    • 2018
  • Sleep is the most basic and essential physiological requirement for mental health, and sleep disorders pose potential risks of metabolic and neurodegenerative diseases. Tryptic hydrolysate of ${\alpha}_{S1}$-casein (${\alpha}_{S1}-CH$) has been shown to possess stress relieving and sleep promoting effects. However, the differential effects of ${\alpha}_{S1}-CH$ on electroencephalographic wave patterns and its effects on the protein levels of ${\gamma}$-aminobutyric acid A ($GABA_A$) receptor subtypes in hypothalamic neurons are not well understood. We found ${\alpha}_{S1}-CH$ (120, 240 mg/kg) increased sleep duration in mice and reduced sleep-wake cycle numbers in rats. While ${\alpha}_{S1}-CH$ (300 mg/kg) increased total sleeping time in rats, it significantly decreased wakefulness. In addition, electroencephalographic theta (${\theta}$) power densities were increased whereas alpha (${\alpha}$) power densities were decreased by ${\alpha}_{S1}-CH$ (300 mg/kg) during sleep-wake cycles. Furthermore, protein expressions of $GABA_A$ receptor ${\beta}_1$ subtypes were elevated in rat hypothalamus by ${\alpha}_{S1}-CH$. These results suggest ${\alpha}_{S1}-CH$, through $GABA_A$ receptor modulation, might be useful for treating sleep disorders.

Gene Transcription in the Leaves of Rice Undergoing Salt-induced Morphological Changes (Oryza sativa L.)

  • Kim, Dea-Wook;Shibato, Junko;Agrawal, Ganesh Kumar;Fujihara, Shinsuke;Iwahashi, Hitoshi;Kim, Du Hyun;Shim, Ie-Sung;Rakwal, Randeep
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.45-59
    • /
    • 2007
  • We describe the gene expression profile of third leaves of rice (cv. Nipponbare) seedlings subjected to salt stress (130 mM NaCl). Transcripts of Mn-SOD, Cu/Zn-SOD, cytosolic and stromal APX, GR and CatB were up-regulated, whereas expression of thylakoid-bound APX and CatA were down-regulated. The levels of the compatible solute proline and of transcripts of its biosynthetic gene, ${\Delta}^1$-pyrroline-5-carboxylate synthetase (P5CS), were strongly increased by salt stress. Interestingly, a potential compatible solute, ${\gamma}$-aminobutyric acid (GABA), was also found to be strongly induced by salt stress along with marked up-regulation of transcripts of GABA-transaminase. A dye-swap rice DNA microarray analysis identified a large number of genes whose expression in third leaves was altered by salt stress. Among 149 genes whose expression was altered at all the times assayed (3, 4 and 6 days) during salt stress, there were 47 annotated novel genes and 76 unknown genes. These results provide new insight into the effect of salt stress on the expression of genes related to antioxidant enzymes, proline and GABA as well as of genes in several functional categories.

Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

  • Lee, Kyung Jin;Shim, Insop;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il sup;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • Objective : High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson's disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods : The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results : High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion : Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Physicochemical Characteristics of Coated Rice Manufactured by the Mixture of Ginseng and Chungkukjang Water Extract (인삼 및 청국장 물추출-혼합액으로 제조한 코팅미의 이화학적 특성)

  • Baek Soon-Yeob;Lee Myung-Ye;Lee Jo-Yoon;Chang Kyung-Ho
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.1
    • /
    • pp.99-106
    • /
    • 2006
  • New application of rice was carried out by coating the rice with the mixture solution of ginseng and chungkukjang water extract The physicochemical characteristics of the coated rice were investigated. Moisture content of uncoated (15.26%) and coated rice$(15.57\sim15.66%)$ was not different significantly. The contents of crude protein, crude fat, and crude ash of the coated rice were higher as much as $4.28\sim11.82%\;8.47\sim47.46%$, and $11.54\sim42.31%$ than those of control, respectively. As total free amino acids in coated rice were increased by augmenting the amount of the extract, total free amino acids according to rate was increased to $3.1\sim7.8$ times. The major amino acids in the coated rice was alanine$(19.56\sim39.88\;mg%)$, leucine$(5.14\sim17.66\;mg%)$, and proline$(9.98\sim16.82\;mg%)$. Of those amino acids, alanine and $\gamma-aminobutyric$ acid in only coated rice were detected to the level of $19.56\sim39.88\;mg%$ and $7.78\sim12.36\;mg%$ respectively. The calcium amount of coated rice was increased to 15% to 20%. As increasing the coating rate, hardness, cohesiveness, chewiness, and brittleness of coated rice were decreased, but springiness was increased. Before cooking, the color of coated rice appeared yellow and after cooking turned to the light yellow. The color intensity was increased feasibly as increasing the coating rate. The sensory characteristic of rice coated manufactured by adding 15% of the extract was best and found to be similar to that of the control.

  • PDF

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

Effects of GABA on Erythropoiesis in the Hep3B Cell and Rat Exposed to Hypoxia

  • Yoon, Joongsoo;Sim, In-Suk
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • The aim of this study was to evaluate gamma-aminobutyric acid (GABA)-induced erythropoietin (EPO) and EPO-receptor expression in human Hep3B cells and Sprague Dawley (SD) rats during hypoxia. Expression levels of EPO, EPO-R mRNA, Janus kinase-2 (JAK-2), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and HIF-2 in response to GABA treatment were evaluated in cell lines. SD rats were randomly divided into 5 groups of 8 rats each, and GABA was orally administered; the groups were the normal control (NC), hypoxia-exposed (G0), as well as the GABA 1 mg/100 g body weight (BW) GABA treated group (G1), 5 mg/100 g BW GABA treated group (G5), and 10 mg/100 g BW GABA treated group (G10) with hypoxia. We analyzed EPO levels and red blood cell counts in rat blood and EPO gene expression in kidney tissue. EPO and VEGF mRNA levels in Hep3B cells exposed to hypoxia were significantly increased and further increased after GABA treatment. However, the expression of EPO-R and JAK-2 mRNAs were not affected by GABA, but hypoxia-induced HIF-1 and HIF-2 mRNA expression was inhibited by GABA. In the kidney tissue of rats exposed to hypoxia, the expression level of EPO mRNA was greatly increased, but levels in the GABA treatment groups significantly decreased. EPO levels in the serum showed the same significant trend, but the red blood cell counts were not significantly different. These findings demonstrate that HIF-1 and HIF-2 activation increase EPO expression in Hep3B cells exposed to hypoxia. However HIF decreased by GABA addition and VEGF increased significantly.