Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.083

Administration of Alphas1-Casein Hydrolysate Increases Sleep and Modulates GABAA Receptor Subunit Expression  

Yayeh, Taddesse (Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University)
Leem, Yea-Hyun (Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University)
Kim, Kyung-Mi (Life Science Research Institute, Novarex Co., Ltd)
Jung, Jae-Chul (Life Science Research Institute, Novarex Co., Ltd)
Schwarz, Jessica (Ingredia SA)
Oh, Ki-Wan (Department of Pharmacy, College of Pharmacy, Chungbuk National University)
Oh, Seikwan (Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.26, no.3, 2018 , pp. 268-273 More about this Journal
Abstract
Sleep is the most basic and essential physiological requirement for mental health, and sleep disorders pose potential risks of metabolic and neurodegenerative diseases. Tryptic hydrolysate of ${\alpha}_{S1}$-casein (${\alpha}_{S1}-CH$) has been shown to possess stress relieving and sleep promoting effects. However, the differential effects of ${\alpha}_{S1}-CH$ on electroencephalographic wave patterns and its effects on the protein levels of ${\gamma}$-aminobutyric acid A ($GABA_A$) receptor subtypes in hypothalamic neurons are not well understood. We found ${\alpha}_{S1}-CH$ (120, 240 mg/kg) increased sleep duration in mice and reduced sleep-wake cycle numbers in rats. While ${\alpha}_{S1}-CH$ (300 mg/kg) increased total sleeping time in rats, it significantly decreased wakefulness. In addition, electroencephalographic theta (${\theta}$) power densities were increased whereas alpha (${\alpha}$) power densities were decreased by ${\alpha}_{S1}-CH$ (300 mg/kg) during sleep-wake cycles. Furthermore, protein expressions of $GABA_A$ receptor ${\beta}_1$ subtypes were elevated in rat hypothalamus by ${\alpha}_{S1}-CH$. These results suggest ${\alpha}_{S1}-CH$, through $GABA_A$ receptor modulation, might be useful for treating sleep disorders.
Keywords
Sleep; ${\alpha}_{S1}-CH$; Electroencephalogram; $GABA_A$ receptor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarenga, T. A., Hirotsu, C., Mazaro-Costa, R., Tufik, S. and Andersen, M. L. (2015) Impairment of male reproductive function after sleep deprivation. Fertil. Steril. 103, 1355-1362.   DOI
2 Cedernaes, J., Osorio, R. S., Varga, A. W., Kam, K., Schioth, H. B. and Benedict, C. (2017) Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease. Sleep Med. Rev. 31, 102-111.   DOI
3 Diykh, M., Li, Y. and Wen P. (2016) EEG sleep stages classification based on time domain features and structural graph similarity. IEEE Trans. Neural Syst. Rehabilit. Eng. 24, 1159-1168.   DOI
4 Doroshenkov, L. G., Konyshev, V. A. and Selishchev, S. V. (2007) Classification of human sleep stages based on EEG processing using hidden Markov models. Med. Tekh. (1), 24-28.
5 Guesdon, B., Messaoudi, M., Lefranc-Millot, C., Fromentin, G., Tome, D. and Even, P. C. (2006) A tryptic hydrolysate from bovine milk alphaS1-casein improves sleep in rats subjected to chronic mild stress. Peptides 27, 1476-1482.   DOI
6 Kay-Stacey, M. and Attarian, H. (2016) Advances in the management of chronic insomnia. BMJ 354, i2123.
7 Olbrich, S., van Dinteren, R. and Arns, M. (2015) Personalized Medicine: Review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder. Neuropsychobiology 72, 229-240.   DOI
8 Dela Pena, I. J., Kim, H. J., de la Pena, J. B., Kim, M., Botanas, C. J., You, K. Y., Woo, T., Lee, Y. S., Jung, J.-C., Kimand, K.-M. and Cheong, J. H. (2016) A tryptic hydrolysate from bovine milk ${\alpha}_{s1}$- casein enhances pentobarbital-induced sleep in mice via the $GABA_A$ receptor. Behav. Brain Res. 313, 184-190.   DOI
9 Puthenkalam, R., Hieckel, M., Simeone, X., Suwattanasophon, C., Feldbauer, R. V., Ecker, G. F. and Ernst, M. (2016) Structural studies of $GABA_A$ receptor binding sites: Which experimental structure tells us what? Front. Mol. Neurosci. 9, 44.
10 Rajaratnam, S. M., Middleton, B., Stone, B. M., Arendt, J. and Dijk, D. J. (2004) Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J. Physiol. 561, 339-351.   DOI
11 Sirdifield, C., Chipchase, S. Y., Owen, S. and Siriwardena, A. N. (2017) A systematic review and meta-synthesis of patients' experiences and perceptions of seeking and using benzodiazepines and Zdrugs: towards safer prescribing. Patient 10, 1-15.   DOI
12 Sanford, L. D., Yang, L., Liu, X. and Tang, X. (2006) Effects of tetrodotoxin (TTX) inactivation of the central nucleus of the amygdala (CNA) on dark period sleep and activity. Brain Res. 1084, 80-88.   DOI
13 Schouten, D. I., Pereira, S. I., Tops, M. and Louzada, F. M. (2017) State of the art on targeted memory reactivation: Sleep your way to enhanced cognition. Sleep Med. Rev. 32, 123-131.   DOI
14 Shi, Y., Dong, J. W., Zhao, J. H., Tang, L. N. and Zhang, J. J. (2014) Herbal insomnia medications that target GABAergic systems: A review of the psychopharmacological evidence. Curr. Neuropharmacol. 12, 289-302.   DOI
15 Liang, C. L. and Marks, G. A. (2014) GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: implications for REM sleep control. Brain Res. 1543, 58-64.   DOI
16 Kitano, N., Tsunoda, K., Tsuji, T., Osuka, Y., Jindo, T., Tanaka, K. and Okura, T. (2014) Association between difficulty initiating sleep in older adults and the combination of leisure-time physical activity and consumption of milk and milk products: a cross-sectional study. BMC Geriatr. 14, 118.   DOI
17 Kripke, D. F. (2016) Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit. F1000Res 5, 918.   DOI
18 Lee, S. H. and Lim, S. M. (2016) Acupuncture for insomnia after stroke: a systematic review and meta-analysis. BMC Complement. Altern. Med. 16, 228.   DOI
19 Lo, J. C., Chong, P. L., Ganesan, S., Leong, R. L. and Chee, M. W. (2016) Sleep deprivation increases formation of false memory. J. Sleep Res. 25, 673-682.   DOI
20 Luppi, P. H., Peyron, C. and Fort, P. (2017) Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med. Rev. 32, 85-94.   DOI
21 Ma, H., Kim, C. S., Ma, Y., Nam, S. Y., Kim, D. S., Woo, S. S., Hong, J. T. and Oh, K. W. (2009) Magnolol enhances pentobarbital-induced sleeping behaviors: possible involvement of GABAergic systems. Phytother. Res. 23, 1340-1344.   DOI
22 Mishima, K. (2016) Sleep problem as a prodrome and risk factor for dementia. Brain Nerve 68, 779-791.
23 Mohler, H., Fritschy, J. M., Vogt, K., Crestani, F. and Rudolph, U. (2005) Pathophysiology and pharmacology of GABAA$GABA_A$ receptors. Handb. Exp. Pharmacol. (169), 225-247.
24 Wongsamitkul, N., Baur, R. and Sigel, E. (2016) Toward Understanding Functional Properties and Subunit Arrangement of ${\alpha}_4{\beta}_2{\delta} {\gamma}$-Aminobutyric Acid, Type A ($GABA_A$) Receptors. J. Biol. Chem. 291, 18474-18483.   DOI
25 Tian, J. and Liu, R. Q. (2015) Mutual information-based correlation analysis of herbs against insomnia. Zhongguo Zhong Yao Za Zhi 40, 3873-3877.
26 Tobaldini, E., Costantino, G., Solbiati, M., Cogliati, C., Kara, T., Nobili, L. and Montano, N. (2017) Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci. Biobehav. Rev. 74, 321-329.   DOI
27 Tou, W. I. and Chen, C. Y. (2014) May disordered protein cause serious drug side effect? Drug Discov. Today 19, 367-372.   DOI
28 Yu, S. Y., Sun, L., Liu, Z., Huang, X. Y., Zuo, L. J., Cao, C. J., Zhang, W. and Wang, X. M. (2013) Sleep disorders in Parkinson's disease: clinical features, iron metabolism and related mechanism. PLoS ONE 8, e82924.   DOI
29 Kim, J. H., Desor, D., Kim, Y. T., Yoon, W. J., Kim, K. S., Jun, J. S., Pyun, K. H. and Shim, I. (2007) Efficacy of alphas1-casein hydrolysate on stress-related symptoms in women. Eur. J. Clin. Nutr. 61, 536-541.   DOI
30 Yan, M. Z., Chang, Q., Zhong, Y., Xiao, B. X., Feng, L., Cao, F. R., Pan, R. L., Zhang, Z. S., Liao, Y. H. and Liu, X. M. (2015) Lotus leaf alkaloid extract displays sedative-hypnotic and anxiolytic effects through $GABA_A$ Receptor. J. Agric. Food Chem. 63, 9277-9285.   DOI
31 Stahl, S.M. (2008) Disorders of sleep and wakefulness and their treatment. In: Stahl's Essential Psychopharamcology: Neuroscientific Basis and Practical Applications (N. Muntner, Ed.), pp. 815-862. Cambridge University Press, New York.