Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.097

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice  

Hong, Sa-Ik (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Kwon, Seung-Hwan (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Hwang, Ji-Young (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Ma, Shi-Xun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Seo, Jee-Yeon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Ko, Yong-Hyun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Kim, Hyoung-Chun (Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University)
Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.24, no.2, 2016 , pp. 115-122 More about this Journal
Abstract
Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.
Keywords
Sleep; Dopamine 2 receptor; Quinpirole; Melatonin; Pentobarbital;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Abrial, E., Betourne, A., Etievant, A., Lucas, G., Scarna, H., Lambas- Senas, L. and Haddjeri, N. (2015) Protein kinase C inhibition rescues manic-like behaviors and hippocampal cell proliferation deficits in the sleep deprivation model of mania. Int. J. Neuropsychopharmacol. 18, pyu031.
2 Binfare, R. W., Mantovani, M., Budni, J., Santos, A. R. and Rodrigues, A. L. (2010) Involvement of dopamine receptors in the antidepressant- like effect of melatonin in the tail suspension test. Eur. J. Pharmacol. 638, 78-83.   DOI
3 Bondi, C. D., McKeon, R. M., Bennett, J. M., Ignatius, P. F., Brydon, L., Jockers, R., Melan, M. A. and Witt-Enderby, P. A. (2008) MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on $G_i$ proteins, MEK 1/2 and microtubule modulation. J. Pineal Res. 44, 288-298.   DOI
4 Brandon, N. J., Delmas, P., Kittler, J. T., McDonald, B. J., Sieghart, W., Brown, D. A., Smart, T. G. and Moss, S. J. (2000) $GABA_A$ receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J. Biol. Chem. 275, 38856-38862.   DOI
5 Brandon, N. J., Jovanovic, J. N., Smart, T. G. and Moss, S. J. (2002) Receptor for activated C kinase-1 facilitates protein kinase Cdependent phosphorylation and functional modulation of $GABA_A$ receptors with the activation of G-protein-coupled receptors. J. Neurosci. 22, 6353-6361.   DOI
6 Canales, J. J. and Iversen, S. D. (2000) Dynamic dopamine receptor interactions in the core and shell of nucleus accumbens differentially coordinate the expression of unconditioned motor behaviors. Synapse 36, 297-306.   DOI
7 Costandi, M. (2013) Neurodegeneration: amyloid awakenings. Nature 497, S19-S20.   DOI
8 Cui, Y., Costa, R. M., Murphy, G. G., Elgersma, Y., Zhu, Y., Gutmann, D. H., Parada, L. F., Mody, I. and Silva, A. J. (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549-560.   DOI
9 Datta, S. (2007) Activation of pedunculopontine tegmental PKA prevents $GABA_B$ receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat. J. Neurophysiol. 97, 3841-3850.   DOI
10 Di Marzo, V., Vial, D., Sokoloff, P., Schwartz, J. C. and Piomelli, D. (1993) Selection of alternative G-mediated signaling pathways at the dopamine $D_2$ receptor by protein kinase C. J. Neurosci. 13, 4846-4853.   DOI
11 Dimpfel, W. (2008) Pharmacological modulation of dopaminergic brain activity and its reflection in spectral frequencies of the rat electropharmacogram. Neuropsychobiology 58, 178-186.   DOI
12 Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167.   DOI
13 Dumoulin, M. C., Aton, S. J., Watson, A. J., Renouard, L., Coleman, T. and Frank, M. G. (2015) Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cereb. Cortex 25, 507-515.   DOI
14 Dyugovskaya, L., Polyakov, A., Cohen-Kaplan, V., Lavie, P. and Lavie, L. (2012) Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling. J. Transl. Med. 10, 211.   DOI
15 El Helou, J., Belanger-Nelson, E., Freyburger, M., Dorsaz, S., Curie, T., La Spada, F., Gaudreault, P. O., Beaumont, E., Pouliot, P., Lesage, F., Frank, M. G., Franken, P. and Mongrain, V. (2013) Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc. Natl. Acad. Sci. U.S.A. 110, 9974-9979.   DOI
16 Hellman, K., Hernandez, P., Park, A. and Abel, T. (2010) Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations. Sleep 33, 19-28.   DOI
17 Holmes, S. W. and Sugden, D. (1982) Effects of melatonin on sleep and neurochemistry in the rat. Br. J. Pharmacol. 76, 95-101.   DOI
18 Ikeda, M., Hojo, Y., Komatsuzaki, Y., Okamoto, M., Kato, A., Takeda, T. and Kawato, S. (2015) Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases. J. Endocrinol. 226, M13-M27.   DOI
19 Jia, J., Zhu, F., Ma, X., Cao, Z., Li, Y. and Chen, Y. Z. (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111-128.   DOI
20 Joung, H. Y., Kang, Y. M., Lee, B. J., Chung, S. Y., Kim, K. S. and Shim, I. (2015) Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms. Biomol. Ther. (Seoul) 23, 479-485.   DOI
21 Jung, E. Y. and Shim, I. (2011) Differential DAergic Control of D1 and D2 Receptor Agonist Over Locomotor Activity and GABA Level in the Striatum. Exp. Neurobiol. 20, 153-157.   DOI
22 Kim, J. W., Kim, C. S., Hu, Z., Han, J. Y., Kim, S. K., Yoo, S. K., Yeo, Y. M., Chong, M. S., Lee, K., Hong, J. T. and Oh, K. W. (2012) Enhancement of pentobarbital-induced sleep by apigenin through chloride ion channel activation. Arch. Pharm. Res. 35, 367-373.   DOI
23 Lee, M. Y., Heo, J. S. and Han, H. J. (2006) Dopamine regulates cell cycle regulatory proteins via cAMP, $Ca^{2+}$/PKC, MAPKs, and NF-${\kappa}B$ in mouse embryonic stem cells. J. Cell. Physiol. 208, 399-406.   DOI
24 Lees, G., Edwards, M. D., Hassoni, A. A., Ganellin, C. R. and Galanakis, D. (1998) Modulation of GABA(A) receptors and inhibitory synaptic currents by the endogenous CNS sleep regulator cis-9,10-octadecenoamide (cOA). Br. J. Pharmacol. 124, 873-882.   DOI
25 Li, G. L., Li, P. and Yang, X. L. (2001) Melatonin modulates ${\gamma}$-aminobutyric $acid_A$ receptor-mediated currents on isolated carp retinal neurons. Neurosci. Lett. 301, 49-53.   DOI
26 Lim, H., Jang, S., Lee, Y., Moon, S., Kim, J. and Oh, S. (2012) Enhancement of Anxiety and Modulation of TH and pERK Expressions in Amygdala by Repeated Injections of Corticosterone. Biomol. Ther. (Seoul) 20, 418-424.   DOI
27 Ma, H., Kim, C. S., Ma, Y., Nam, S. Y., Kim, D. S., Woo, S. S., Hong, J. T. and Oh, K. W. (2009) Magnolol enhances pentobarbital-induced sleeping behaviors: possible involvement of GABAergic systems. Phytother. Res. 23, 1340-1344.   DOI
28 Pandi-Perumal, S. R., Trakht, I., Srinivasan, V., Spence, D. W., Maestroni, G. J., Zisapel, N. and Cardinali, D. P. (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 85, 335-353.   DOI
29 Ma, Y., Han, H., Nam, S. Y., Kim, Y. B., Hong, J. T., Yun, Y. P. and Oh, K. W. (2008) Cyclopeptide alkaloid fraction from Zizyphi Spinosi Semen enhances pentobarbital-induced sleeping behaviors. J. Ethnopharmacol. 117, 318-324.   DOI
30 Miyamoto, M. (2009) Pharmacology of ramelteon, a selective $MT_1/MT_2$ receptor agonist: a novel therapeutic drug for sleep disorders. CNS Neurosci. Ther. 15, 32-51.   DOI
31 Parry, B. L., Fernando Martinez, L., Maurer, E. L., Lopez, A. M., Sorenson, D. and Meliska, C. J. (2006) Sleep, rhythms and women's mood. Part II. Menopause. Sleep Med. Rev. 10, 197-208.   DOI
32 Proença, M. B., Dombrowski, P. A., Da Cunha, C., Fischer, L., Ferraz, A. C. and Lima, M. M. (2014) Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 76 Pt A, 118-126.   DOI
33 Schindler, C. W. and Carmona, G. N. (2002) Effects of dopamine agonists and antagonists on locomotor activity in male and female rats. Pharmacol. Biochem. Behav. 72, 857-863.   DOI
34 Shah, V. K., Choi, J. J., Han, J. Y., Lee, M. K., Hong, J. T. and Oh, K. W. (2014) Pachymic Acid Enhances Pentobarbital-Induced Sleeping Behaviors via $GABA_A$-ergic Systems in Mice. Biomol. Ther. (Seoul) 22, 314-320.   DOI
35 Sugden, D. (1983) Psychopharmacological effects of melatonin in mouse and rat. J. Pharmacol. Exp. Ther. 227, 587-591.
36 Wan, X., Mathers, D. A. and Puil, E. (2003) Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience 121, 947-958.   DOI
37 Takahashi, A., Mikami, M. and Yang, J. (2007) p38 mitogen-activated protein kinase independent SB203580 block of $H_2O_2$-induced increase in GABAergic mIPSC amplitude. Neuroreport 18, 963-967.   DOI
38 Vilar, A., de Lemos, L., Patraca, I., Martinez, N., Folch, J., Junyent, F., Verdaguer, E., Pallas, M., Auladell, C. and Camins, A. (2014) Melatonin suppresses nitric oxide production in glial cultures by proinflammatory cytokines through p38 MAPK inhibition. Free Radic. Res. 48, 119-128.   DOI
39 Volkow, N. D., Tomasi, D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Benveniste, H., Kim, R., Thanos, P. K. and Ferre, S. (2012) Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J. Neurosci. 32, 6711-6717.   DOI
40 Wang, F., Li, J. C., Wu, C. F., Yang, J. Y., Xu, F. and Peng, F. (2002) Hypnotic activity of melatonin: involvement of semicarbazide hydrochloride, blocker of synthetic enzyme for GABA. Acta Pharmacol. Sin. 23, 860-864.
41 Wilhelmsen-Langeland, A., Saxvig, I. W., Pallesen, S., Nordhus, I. H., Vedaa, O., Lundervold, A. J. and Bjorvatn, B. (2013) A randomized controlled trial with bright light and melatonin for the treatment of delayed sleep phase disorder: effects on subjective and objective sleepiness and cognitive function. J. Biol. Rhythms 28, 306-321.   DOI
42 Wood, L. J., Nail, L. M., Perrin, N. A., Elsea, C. R., Fischer, A. and Druker, B. J. (2006) The cancer chemotherapy drug etoposide (VP- 16) induces proinflammatory cytokine production and sickness behavior- like symptoms in a mouse model of cancer chemotherapyrelated symptoms. Biol. Res. Nurs. 8, 157-169.   DOI
43 Zawilska, J. and Iuvone, P. M. (1990) Alpha-2 adrenergic activity of bromocriptine and quinpirole in chicken pineal gland. Effects on melatonin synthesis and [$^3H$]rauwolscine binding. J. Pharmacol. Exp. Ther. 255, 1047-1052.
44 Yan, Z., Feng, J., Fienberg, A. A. and Greengard, P. (1999) $D_2$ dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl. Acad. Sci. U.S.A. 96, 11607-11612.   DOI