Browse > Article
http://dx.doi.org/10.6564/JKMRS.2020.24.4.104

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure  

Lee, Sujin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Oh, Sangah (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Seonghye (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Wonho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Choi, Juyoung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Hani (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Yujin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Suhkmann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.24, no.4, 2020 , pp. 104-116 More about this Journal
Abstract
Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.
Keywords
High resolution-magic angle spinning; nuclear magnetic resonance spectroscopy; metabolomics; Danio rerio; Fipronil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Liu, P. Ma, P. A. Cassidy, R. Carmer, G. Zhang, P. Venkatraman and Y. F. Leung, Sci. Rep. 7, 1 (2017)   DOI
2 C. Wyatt, E. M. Bartoszek and E. Yaksi, Eur. J. Neurosci. 42, 1746 (2015)   DOI
3 OECD guideline for the testing of chemicals: Fish, Acute Toxicity Test, Guideline 203
4 S. Tiziani, V. Lopes and U. L. Gunther, Neoplasia 11, 269 (2009)   DOI
5 L. S. Castillo-Peinado and M. L. de Castro, Anal. Chim. Acta 925, 1 (2016)   DOI
6 J. G. Bundy, M. P. Davey and M. R. Viant, Metabolomics 5, 3 (2009)   DOI
7 O. Fiehn, Brief Funct Genomics (pp. 155-171). Springer, Dordrecht (2002)
8 O. Beckonert, M. Coen, H. C. Keun, Y. Wang, T. M. Ebbels, E. Holmes and J. K. Nicholson, Nat. Protoc. 5, 1019 (2010)   DOI
9 A. A. De Graaf, W. M. M. J. Bovee, N. E. P. Deutz and R. A. F. M. Chamuleau, Magn. Reson. Imagin. 6, 255 (1988)   DOI
10 T. Rudi, G. Guthausen, W. Burk, C. T. Reh and H. D. Isengard, Food Chem. 106, 1375 (2008)   DOI
11 D. Schlenk, D. B. Huggett, J. Allgood, E. Bennett, J. Rimoldi, A. B. Beeler and P. Bedient, Arch. Environ. Contam. Toxicol. 41, 325 (2001)   DOI
12 J. Gan, S. Bondarenko, L. Oki, D. Haver and J. X. Li, Environ. Sci. Technol. 46, 1489 (2012)   DOI
13 H. Wu, A. D. Southam, A. Hines and M. R. Viant, Anal. Biochem. 372, 204 (2008)   DOI
14 Y. Wang, M. E. Bollard, H. Keun, H. Antti, O. Beckonert, T. M. Ebbels and J. K. Nicholson, Anal. Biochem. 323, 26 (2003)   DOI
15 T. P. Dunkley, R. Watson, J. L. Griffin, P. Dupree and K. S. Lilley, Mol. Cell Proteomics 3, 1128 (2004)   DOI
16 N. K. Khoo, A. Iravani, M. Arjmand, F. Vahabi, M. Lajevardi, S. M. Akrami and Z. Zamani, Lasers Med. Sci. 28, 1527 (2013)   DOI
17 O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon and J. K. Nicholson, Nat. Protoc. 2, 2692 (2007)   DOI
18 N. A. Karp, J. L. Griffin and K. S. Lilley, Proteomics 5, 81(2005)   DOI
19 X. Chen, C. Hu, J. Dai and L. Chen, Evid. Based Complementary Altern. Med. (2015)
20 C. Wang, Y. Qian, X. Zhang, F. Chen, Q. Zhang, Z. Li and M. Zhao, Environ. Pollut. 211, 252 (2016)   DOI
21 M. R. Viant, E. S. Rosenblum and R. S. Tjeerdema, Environ. Sci. Technol. 37, 4982 (2003)   DOI
22 L. Zhang, X. Liu, L. You, D. Zhou, H. Wu, L. Li and J. Yu, Mar. Environ. Res. 72, 33 (2011)   DOI
23 H. D. Xu, J. S. Wang, M. H. Li, Y. Liu, T. Chen and A. Q. Jia, Aquat. Toxicol. 159, 69 (2015)   DOI
24 K. E. Hillyer, S. Tumanov, S. Villas-Bôas and S. K. Davy, J. Exp. Biol. 219, 516 (2016)   DOI
25 Y. Wang, S. Wu, L. Chen, C. Wu, R. Yu, Q. Wang and X. Zhao, Chemosphere 88, 484 (2012)   DOI
26 S. Gul, E. Belge-Kurutas, E. Yildiz, A. Sahan and F. Doran, Environ. Int. 30, 605 (2004)   DOI
27 P. Mineau, Environ. Toxicol. Chem. 21, 1497 (2002)   DOI
28 M. W. Dryden, T. M.Denenberg and S. Bunch, Vet. Parasitol. 93, 69 (2000)   DOI
29 A. S. Gunasekara, T. Truong, K. S. Goh, F. Spurlock and R. S. Tjeerdema, J. Pestic. Sci. 32, 189 (2007)   DOI
30 A.,Aajoud, P. Ravanel and M. Tissut, J. Agric. Food Chem. 51, 1347 (2003)   DOI
31 A. M. Hosie, H. A. Baylis, S. D.Buckingham and D. B. Sattelle, Br. J. Pharmacol. 115, 909 (1995)   DOI
32 Y. Ozoe and M. Akamatsu, Pest Manag. Sci. 57, 923 (2001)   DOI
33 A. Bobe, J. F. Cooper, C. M. Coste and M. A. Muller, Pestic. Sci. 52, 275 (1998)   DOI
34 D. Hainzl, L. M. Cole and J. E. Casida, Chem. Res. Toxicol. 11, 1529 (1998)   DOI
35 L. M. Cole, R. A. Nicholson and J. E. Casida, Pestic. Biochem. Phys. 46, 47 (1993)   DOI
36 T. Narahashi, X. Zhao, T. Ikeda, V. L. Salgado and J. Z. Yeh, Pestic. Biochem. Phys. 97, 149 (2010)   DOI
37 X. Zhao, J. Z. Yeh, V. L. Salgado and T. Narahashi, J. Pharmacol. Exp. Ther. 310, 192 (2004)   DOI
38 K. Haya, Environ. Toxicol. Chem. 8, 381 (1989)   DOI
39 S. Beggel, I. Werner, R. E. Connon and J. P. Geist, Sci. Total Environ. 426, 160 (2012)   DOI
40 M. Kitulagodage, W. A. Buttemer and L. B. Astheimer, Ecotoxicology 20, 653 (2011)   DOI
41 P. R. de Oliveira, G. H. Bechara, S. E. Denardi, R. J. Oliveira and M. I. C. Mathias, Exp. Toxicol. Patho. 64,569 (2012)   DOI
42 C. M. Stehr, T. L. Linbo, J. P. Incardona and N. L. Scholz, Toxicol. Sci. 92, 270 (2006)   DOI
43 G. Kari, U. Rodeck and A. P. Dicker, Clin. Pharmacol. Ther. 82, 70 (2007)   DOI
44 P. C. Das, Y. Cao, N. Cherrington, E. Hodgson and R. L. Rose, Chem.-Biol. Interact. 164, 200 (2006)   DOI
45 C. Vidau, J. L. Brunet, A. Badiou and L. P. Belzunces, Toxicol. In Vitro 23, 589 (2009)   DOI
46 R. A. Ardeshir, H. Zolgharnein, A. Movahedinia, N. Salamat and E. Zabihi, Toxicol. Rep. 4, 348 (2017)   DOI
47 H. Chu, H. Sun, G. L. Yan, A. H. Zhang, C. Liu, H. Dong and X. J. Wang, World J. Tradit. Chin. Med. 1, 9 (2015)   DOI
48 M. Ott, V. Gogvadze, S. Orrenius and B. Zhivotovsky, Apoptosis 12, 913 (2007)   DOI
49 T. A. Slotkin and F. J. Seidler, Neurotoxicol. Teratol. 32, 124 (2010)   DOI
50 X. Wang, M. A. Martinez, Q. Wu, I. Ares, M. R. Martinez-Larranaga, A. Anadon and Z. Yuan, Crit. Rev. Toxicol. 46, 876 (2016)   DOI
51 Y. Wang, W. Zhu, D. Wang, M. Teng, J. Yan, J. Miao and Z. Zhou, Chemosphere 168, 1571 (2017)   DOI
52 X. Wang, E. Cheng, I. S. Burnett, Y. Huang and D. Wlodkowic, Sci. Rep. 7, 1 (2017)   DOI