DOI QR코드

DOI QR Code

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Oh, Sangah (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Seonghye (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Wonho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Choi, Juyoung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Hani (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Yujin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Suhkmann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2020.10.15
  • Accepted : 2020.12.11
  • Published : 2020.12.20

Abstract

Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Y. Wang, S. Wu, L. Chen, C. Wu, R. Yu, Q. Wang and X. Zhao, Chemosphere 88, 484 (2012) https://doi.org/10.1016/j.chemosphere.2012.02.086
  2. S. Gul, E. Belge-Kurutas, E. Yildiz, A. Sahan and F. Doran, Environ. Int. 30, 605 (2004) https://doi.org/10.1016/S0160-4120(03)00059-X
  3. P. Mineau, Environ. Toxicol. Chem. 21, 1497 (2002) https://doi.org/10.1897/1551-5028(2002)021<1497:ETPOBM>2.0.CO;2
  4. A. S. Gunasekara, T. Truong, K. S. Goh, F. Spurlock and R. S. Tjeerdema, J. Pestic. Sci. 32, 189 (2007) https://doi.org/10.1584/jpestics.R07-02
  5. A.,Aajoud, P. Ravanel and M. Tissut, J. Agric. Food Chem. 51, 1347 (2003) https://doi.org/10.1021/jf025843j
  6. M. W. Dryden, T. M.Denenberg and S. Bunch, Vet. Parasitol. 93, 69 (2000) https://doi.org/10.1016/S0304-4017(00)00318-6
  7. A. M. Hosie, H. A. Baylis, S. D.Buckingham and D. B. Sattelle, Br. J. Pharmacol. 115, 909 (1995) https://doi.org/10.1111/j.1476-5381.1995.tb15896.x
  8. Y. Ozoe and M. Akamatsu, Pest Manag. Sci. 57, 923 (2001) https://doi.org/10.1002/ps.375
  9. A. Bobe, J. F. Cooper, C. M. Coste and M. A. Muller, Pestic. Sci. 52, 275 (1998) https://doi.org/10.1002/(SICI)1096-9063(199803)52:3<275::AID-PS720>3.0.CO;2-S
  10. D. Hainzl, L. M. Cole and J. E. Casida, Chem. Res. Toxicol. 11, 1529 (1998) https://doi.org/10.1021/tx980157t
  11. L. M. Cole, R. A. Nicholson and J. E. Casida, Pestic. Biochem. Phys. 46, 47 (1993) https://doi.org/10.1006/pest.1993.1035
  12. T. Narahashi, X. Zhao, T. Ikeda, V. L. Salgado and J. Z. Yeh, Pestic. Biochem. Phys. 97, 149 (2010) https://doi.org/10.1016/j.pestbp.2009.07.008
  13. X. Zhao, J. Z. Yeh, V. L. Salgado and T. Narahashi, J. Pharmacol. Exp. Ther. 310, 192 (2004) https://doi.org/10.1124/jpet.104.065516
  14. K. Haya, Environ. Toxicol. Chem. 8, 381 (1989) https://doi.org/10.1897/1552-8618(1989)8[381:TOPITF]2.0.CO;2
  15. S. Beggel, I. Werner, R. E. Connon and J. P. Geist, Sci. Total Environ. 426, 160 (2012) https://doi.org/10.1016/j.scitotenv.2012.04.005
  16. M. Kitulagodage, W. A. Buttemer and L. B. Astheimer, Ecotoxicology 20, 653 (2011) https://doi.org/10.1007/s10646-011-0605-5
  17. P. R. de Oliveira, G. H. Bechara, S. E. Denardi, R. J. Oliveira and M. I. C. Mathias, Exp. Toxicol. Patho. 64,569 (2012) https://doi.org/10.1016/j.etp.2010.11.015
  18. C. M. Stehr, T. L. Linbo, J. P. Incardona and N. L. Scholz, Toxicol. Sci. 92, 270 (2006) https://doi.org/10.1093/toxsci/kfj185
  19. P. C. Das, Y. Cao, N. Cherrington, E. Hodgson and R. L. Rose, Chem.-Biol. Interact. 164, 200 (2006) https://doi.org/10.1016/j.cbi.2006.09.013
  20. C. Vidau, J. L. Brunet, A. Badiou and L. P. Belzunces, Toxicol. In Vitro 23, 589 (2009) https://doi.org/10.1016/j.tiv.2009.01.017
  21. R. A. Ardeshir, H. Zolgharnein, A. Movahedinia, N. Salamat and E. Zabihi, Toxicol. Rep. 4, 348 (2017) https://doi.org/10.1016/j.toxrep.2017.06.010
  22. G. Kari, U. Rodeck and A. P. Dicker, Clin. Pharmacol. Ther. 82, 70 (2007) https://doi.org/10.1038/sj.clpt.6100223
  23. Y. Wang, W. Zhu, D. Wang, M. Teng, J. Yan, J. Miao and Z. Zhou, Chemosphere 168, 1571 (2017) https://doi.org/10.1016/j.chemosphere.2016.11.157
  24. X. Wang, E. Cheng, I. S. Burnett, Y. Huang and D. Wlodkowic, Sci. Rep. 7, 1 (2017) https://doi.org/10.1038/s41598-016-0028-x
  25. Y. Liu, P. Ma, P. A. Cassidy, R. Carmer, G. Zhang, P. Venkatraman and Y. F. Leung, Sci. Rep. 7, 1 (2017) https://doi.org/10.1038/s41598-016-0028-x
  26. C. Wyatt, E. M. Bartoszek and E. Yaksi, Eur. J. Neurosci. 42, 1746 (2015) https://doi.org/10.1111/ejn.12932
  27. OECD guideline for the testing of chemicals: Fish, Acute Toxicity Test, Guideline 203
  28. S. Tiziani, V. Lopes and U. L. Gunther, Neoplasia 11, 269 (2009) https://doi.org/10.1593/neo.81396
  29. L. S. Castillo-Peinado and M. L. de Castro, Anal. Chim. Acta 925, 1 (2016) https://doi.org/10.1016/j.aca.2016.04.040
  30. J. G. Bundy, M. P. Davey and M. R. Viant, Metabolomics 5, 3 (2009) https://doi.org/10.1007/s11306-008-0152-0
  31. O. Fiehn, Brief Funct Genomics (pp. 155-171). Springer, Dordrecht (2002)
  32. O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon and J. K. Nicholson, Nat. Protoc. 2, 2692 (2007) https://doi.org/10.1038/nprot.2007.376
  33. O. Beckonert, M. Coen, H. C. Keun, Y. Wang, T. M. Ebbels, E. Holmes and J. K. Nicholson, Nat. Protoc. 5, 1019 (2010) https://doi.org/10.1038/nprot.2010.45
  34. A. A. De Graaf, W. M. M. J. Bovee, N. E. P. Deutz and R. A. F. M. Chamuleau, Magn. Reson. Imagin. 6, 255 (1988) https://doi.org/10.1016/0730-725X(88)90399-2
  35. T. Rudi, G. Guthausen, W. Burk, C. T. Reh and H. D. Isengard, Food Chem. 106, 1375 (2008) https://doi.org/10.1016/j.foodchem.2007.04.079
  36. D. Schlenk, D. B. Huggett, J. Allgood, E. Bennett, J. Rimoldi, A. B. Beeler and P. Bedient, Arch. Environ. Contam. Toxicol. 41, 325 (2001) https://doi.org/10.1007/s002440010255
  37. J. Gan, S. Bondarenko, L. Oki, D. Haver and J. X. Li, Environ. Sci. Technol. 46, 1489 (2012) https://doi.org/10.1021/es202904x
  38. H. Wu, A. D. Southam, A. Hines and M. R. Viant, Anal. Biochem. 372, 204 (2008) https://doi.org/10.1016/j.ab.2007.10.002
  39. Y. Wang, M. E. Bollard, H. Keun, H. Antti, O. Beckonert, T. M. Ebbels and J. K. Nicholson, Anal. Biochem. 323, 26 (2003) https://doi.org/10.1016/j.ab.2003.07.026
  40. T. P. Dunkley, R. Watson, J. L. Griffin, P. Dupree and K. S. Lilley, Mol. Cell Proteomics 3, 1128 (2004) https://doi.org/10.1074/mcp.T400009-MCP200
  41. N. K. Khoo, A. Iravani, M. Arjmand, F. Vahabi, M. Lajevardi, S. M. Akrami and Z. Zamani, Lasers Med. Sci. 28, 1527 (2013) https://doi.org/10.1007/s10103-012-1247-4
  42. N. A. Karp, J. L. Griffin and K. S. Lilley, Proteomics 5, 81(2005) https://doi.org/10.1002/pmic.200400881
  43. X. Chen, C. Hu, J. Dai and L. Chen, Evid. Based Complementary Altern. Med. (2015)
  44. C. Wang, Y. Qian, X. Zhang, F. Chen, Q. Zhang, Z. Li and M. Zhao, Environ. Pollut. 211, 252 (2016) https://doi.org/10.1016/j.envpol.2016.01.016
  45. M. R. Viant, E. S. Rosenblum and R. S. Tjeerdema, Environ. Sci. Technol. 37, 4982 (2003) https://doi.org/10.1021/es034281x
  46. L. Zhang, X. Liu, L. You, D. Zhou, H. Wu, L. Li and J. Yu, Mar. Environ. Res. 72, 33 (2011) https://doi.org/10.1016/j.marenvres.2011.04.002
  47. H. D. Xu, J. S. Wang, M. H. Li, Y. Liu, T. Chen and A. Q. Jia, Aquat. Toxicol. 159, 69 (2015) https://doi.org/10.1016/j.aquatox.2014.11.020
  48. K. E. Hillyer, S. Tumanov, S. Villas-Bôas and S. K. Davy, J. Exp. Biol. 219, 516 (2016) https://doi.org/10.1242/jeb.128660
  49. M. Ott, V. Gogvadze, S. Orrenius and B. Zhivotovsky, Apoptosis 12, 913 (2007) https://doi.org/10.1007/s10495-007-0756-2
  50. T. A. Slotkin and F. J. Seidler, Neurotoxicol. Teratol. 32, 124 (2010) https://doi.org/10.1016/j.ntt.2009.12.001
  51. X. Wang, M. A. Martinez, Q. Wu, I. Ares, M. R. Martinez-Larranaga, A. Anadon and Z. Yuan, Crit. Rev. Toxicol. 46, 876 (2016) https://doi.org/10.1080/10408444.2016.1223014
  52. H. Chu, H. Sun, G. L. Yan, A. H. Zhang, C. Liu, H. Dong and X. J. Wang, World J. Tradit. Chin. Med. 1, 9 (2015) https://doi.org/10.15806/j.issn.2311-8571.2015.0015