• 제목/요약/키워드: fuzzy variables

검색결과 595건 처리시간 0.03초

A Fuzzy System Representation of Functions of Two Variables and its Application to Gray Scale Images

  • Moon, Byung-soo;Kim, Young-taek;Kim, Jang-yeol
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.569-573
    • /
    • 2001
  • An approximate representation of discrete functions {f$_{i,j}\mid$|i, j=-1, 0, 1, …, N+1}in two variables by a fuzzy system is described. We use the cubic B-splines as fuzzy sets for the input fuzzification and spike functions as the output fuzzy sets. The ordinal number of f$_{i,j}$ in the sorted list is taken to be the out put fuzzy set number in the (i, j) th entry of the fuzzy rule table. We show that the fuzzy system is an exact representation of the cubic spline function s(x, y)=$\sum_{N+1}^{{i,j}=-1}f_{i,j}B_i(x)B_j(y)$ and that the approximation error S(x, y)-f(x, y) is surprisingly O($h^2$) when f(x, y) is three times continuously differentiable. We prove that when f(x, y) is a gray scale image, then the fuzzy system is a smoothed representation of the image and the original image can be recovered exactly from its fuzzy system representation when it is a digitized image.e.

  • PDF

Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구 (A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation)

  • 노석범;안태천;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

퍼지를 이용한 해태건조기용 자동 온도${\cdot}$습도 제어시스템 (The Automatic Temperature and Humidity Control System for Laver Drying Machine Using Fuzzy)

  • 김은석;주기세
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.167-173
    • /
    • 2002
  • The look up table method conventionally applied to control the inner temperature and humidity of a laver drying machine has repeatedly occurred not only laver's damage but also inferior goods since the reaching time at the optimum state takes a long time. In this paper, a fuzzy control theory instead of the look up table was proposed to reduce the reaching time at the optimum state. The proposed method used six input variables and four output variables for the fuzzy control, and a triangle rule for a fuzzifier, The Mandani's min-max method was applied to a fuzzy inference. Also, the mean method of maximum was applied to a defuzzifier. The method applied to the fuzzy controller contributed to reduce the reaching time at the optimum state, and to minimize not only laver's damage but also inferior goods.

Neuro-Fuzzy를 이용한 GMA 용접의 비드형상 추론 알고리즘 개발 (Development of Inference Algorithm for Bead Geometry in GMAW using Neuro-Fuzzy)

  • 김면희;이종혁;이태영;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.608-611
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.

  • PDF

Design of Fault Tolerant Control System for Steam Generator Using Fuzzy Logic

  • Kim, Myung-Ki;Seo, Mi-Ro
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.321-328
    • /
    • 1998
  • A controller and sensor fault tolerant system jot a steam generator is designed with fuzzy logic. A structure of the : proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controlled and a sensor induced performances to identify Which Part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a charge in error of the system output an chosen as fuzzy variables. The fuzzy logic jot a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency, Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the : proposed fault tolerant control scheme jot a steam generator regulates welt water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even mote.

  • PDF

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권2호
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

Strong Consistent Estimator for the Expectation of Fuzzy Stochastic Model

  • Kim, Yun-Kyong
    • International Journal of Reliability and Applications
    • /
    • 제1권2호
    • /
    • pp.123-131
    • /
    • 2000
  • This paper concerns with the consistent estimator for the fuzzy expectation of a random variable taking values in the space F($R^p$) of upper semicontinuous convex fuzzy subsets of $R^p$ with compact support. We introduce the concept of a fuzzy sample mean and show that the fuzzy sample mean is a strong consistent estimator for the fuzzy expectation. Some examples are given to illustrate the main result.

  • PDF

The Rank Transform Method in Nonparametric Fuzzy Regression Model

  • Choi, Seung-Hoe;Lee, Myung-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.617-624
    • /
    • 2004
  • In this article the fuzzy number rank and the fuzzy rank transformation method are introduced in order to analyse the non-parametric fuzzy regression model which cannot be described as a specific functional form such as the crisp data and fuzzy data as a independent and dependent variables respectively. The effectiveness of fuzzy rank transformation methods is compared with other methods through the numerical examples.

  • PDF

Renewal Reward Processes with Fuzzy Rewards and Fuzzy Inter-arrival Times

  • Hong, Dug-Hun;Do, Hae-Young;Park, Jin-Myeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.195-204
    • /
    • 2006
  • In this paper, we consider a renewal process in which both the inter-arrival times and rewards are fuzzy random variables. We prove the uniform levelwise convergence of fuzzy renewal and fuzzy renewal rewards. These results improve the result of Popova and Wu[European J. Oper. Research 117(1999), 606-617] and the main result of Hwang [Fuzzy Sets and Systems 116 (2000), 237-244].

  • PDF

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • 제2권3호
    • /
    • pp.255-269
    • /
    • 2013
  • This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.