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Abstract. This paper concerns with the consistent estimator for the
fuzzy expectation of a random variable taking values in the space F(RP)
of upper semicontinuous convex fuzzy subsets of RP with compact sup-
port. We introduce the concept of a fuzzy sample mean and show that
the fuzzy sample mean is a strong consistent estimator for the fuzzy
expectation. Some examples are given to illustrate the main result.
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1. INTRODUCTION

In recent years, there has been increasing interest in statistical inference for
fuzzy stochastic model since Puri and Ralescu (1986) introduced the concept of
fuzzy random variables. Schnatter (1992) introduced the concept of fuzzy sample
mean and fuzzy sample variance in order to discuss the generalization of statistical
methods to fuzzy data. Yao and Hwang (1996) studied point estimation for random
sample with one vague data. Recently, Grzegorzewski (2000) proposed a definition of
fuzzy test for testing statistical hypotheses with vague data and Korner (2000) also
suggested a method to test hypotheses about expectation of fuzzy random variable.

This paper concerns with the strong consistent estimator for the fuzzy expecta-
tion of a random variable taking values in the space F'(RP) of upper semicontinuous
convex fuzzy subsets of RP with compact support. To this end, strong laws of large
numbers (for short, SLLN) for fuzzy random variables should be considered. The
SLLN for fuzzy random variables was obtained by Klement et al. (1986), Inoue
(1991), Molchanov (1999), Joo and Kim (preprint) and etc. Our result generalizes
the results of earlier works to the case of a more general setting.
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2 . PRELIMINARIES

Let K(RP) denote the family of non-empty compact convex subsets of the Eu-
clidean space RP. For A, B € K(RP), let us denote

§(A,B) = inf |a — b|,
(4,B) sup inf Ja — b
where |.| denotes the Euclidean norm. Then the space K(RP) is metrizable by the
Hausdorff metric defined by
h(A,B) = max{6(A, B),d(B,A)}.

A norm of A € K(RP) is defined by

[ All = h(4,{0}) = sup|al.

acA

It is well-known that K (RP) is complete and separable with respect to the Hausdorff

metric h ( See Debreu (1966) ). The addition and scalar multiplication on K(RP)
are defined as usual:

A®B = {a+b:ac Abe B}
M = {Aa:ae A)

for A,B € K(RP) and A € R.

Throughout this paper, let (Q, 4, P) be a probability space. A set-valued func-
tion X : Q@ — K(RP) is called measurable if for each closed subset B of RP,

X 1(B)={w: X(w)N B # 0}

is a measurable set. It is well-known that the measurablility of X is equivalent
to the measurability of X considered as a map from 2 to the metric space K(RP)
endowed with the Hausdorff metric h. A set-valued function X : Q@ — K(RP) is
called a random set if it is measurable.

A random set X is called integrably bounded if E||X|| < co. The expectation of
integrably bounded random set X is defined by

E(X)={Ef: fe€ L(f,RP)and f(w) € X(w)a.s.}.
It is well-known that if E||X|| < oo, then E(X) € K(RP), and that

E(Xl @XQ) = E(Xl) 7] E(XZ))
E(\X) = AE(X).

The following SLLN for random sets was proved by Artstein and Vitale (1975)
and generalized by Artstein and Hansen (1985).
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Theorem 2.1. Let {X,} be a sequence of independent and identically distributed
random sets. If E||X1]| < oo, then

lim h(L & X, EX)) = 0 as.

3 . MAIN RESULTS

In what follows, A denotes the closure of a set A C RP. Let F(RP) denote the
family of all fuzzy sets u : RP — [0, 1] with the following properties;

(1) u is normal, i.e., there exists z € RP suchthat u(z) = 1;
(2) wu is upper semicontinuous;

(3) u is a convex fuzzy set,i.e., u(Az + (1 — N)y) > min(u(z),u(y)) for z,y € RP
and A € [0, 1];

(4) suppu = {z € RP: u(z) > 0} is compact.

For a fuzzy set v in RP, the a-level set of u is defined by

{z:u(z) >a}, H0<a<l
Lou =
supp u, ifa=0.

Then, it follows immediately that v € F(RP) if and only if L,u € K(RP) for each
a € [0,1]. The linear structure on F(RP) is defined as usual;

(u®v)(z) = sup min(u(z),v(y)),
Tt+y=z

_Julz/X), A#0
(Mu)(z) = {I{o}, A= 0,

for u,v € F(RP) and A € R, where I(g) is the indicator function of {0}. Then it is
known that Ly(u @ v) = Lau & Lov and Ly (Au) = ALyu for each a.

Lemma 3.1. For u € F(RP), we define
fu: [071] — (K(Rp)ah)afu(a) = Lqu.

Then the followings hold;
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(1) fu is left continuous on (0,1],
(2) fu has right-limits on [0,1)and f, is right-continuous at 0.

Proof. See Lemma 2.2 of Joo and Kim (2000). O

We denote |J Lgu by L,+u. Then the right limit of f, at a is L,+u. Now we
B>a
define, for J C [0,1],

wy(J) = sup h(Lg,u, Ly,u) (3.1)

a1,a2€]

then it follows that for 0 < a < <1,
wy(a, B) = wy(a, f] = h(Ly+u, Lgu),
and
wyle, B) = wula, B] = h(Lau, Lgu).
Lemma 3.2. For each u € F(RP) and € > 0, there exist a partition 0 = ap < a7 <
. < ar =1 of [0,1] such that
wyloi_1,05) <€6,1=1,2,...,7. (3.2)

Proof. See Lemma 2.3 of Joo and Kim (2000). O

Now, in order to generalize the Hausdorff metric on K(RP) to F(RP), we define
the two metrics d;, ds on F(RP) by

1
dy (u,v) =/ h(Lqu, Lyv) da
0

deo(u,v) :0<;><1 sup h(Lqu, Lyv).

Also, the norm of u is defined as

lull = doo(u,0) = sup |z,
z€Lou

Then it is well-known that F(RP) is complete with respect to two metrics d; and
dwo , and that F(RP) is separable with respect to d; but not with respect to dy(see
Klement et al. (1986)).
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A fuzzy set valued function X : @ — F(RP) is called measurable if for each
closed subset B of RP,
X7Y(B)(w) = supX (w)(z)
z€EB
is measurable when considered as a function from € to [0, 1]. It is well-known that
X is measurable if and only if for each « € [0,1], Lo X is measurable as a set-valued
function. A fuzzy set valued function X : Q@ — F(RP) is called a fuzzy random
variable if it is measurable .

A fuzzy random variable X is called integrably bounded if E|X]| < oo. The
expectation of integrably bounded random fuzzy set X is a fuzzy subset of R?
defined by

E(X)(z) =sup{a € [0,1] : z € E(LoX)}.

It is well-known that if E||X|| < oo, then E(X) € F(RP), and LoE(X) = E(LyX)
for all « € [0,1], and that
E(X1 ©® X2) = E(Xl) D E(Xg),
E(\X) = AE(X).

The fuzzy random variables X, Xo,..., X, are called independent if for every
closed subsets By, B, ..., B, of RP, the random variables

XTHB), X5 (By), ..., X 1 (By)

n

are independent in the usual sense. Then it follows that X, X»,..., X, are inde-
pendent if and only if the Borel o-fields

0{LoX1: @ €[0,1]}, 0{Lo X2 : @ €[0,1]},...,0{LaXpn: a €[0,1]}

are independent in the usual sense. Also, the fuzzy random variables X1, Xa,..., X,
are said to have the same fuzzy distribution as X if for every closed subsets B of
RP, the random variables

X7Y(B), X;4(B),..., X} (B)

n

have the same distribution as X ~!(B) in the usual sense. It follows that if the fuzzy

random variables X1, Xo,..., X, have the same fuzzy distribution as X, then for
each «, the random sets Lo X1, Lo Xo,. .., LoX, have the same distribution as Ly, X.
The fuzzy random variables X1, Xo, ..., X, are called a fuzzy random sample from

the population with fuzzy distribution as a fuzzy random variable X if they are
independent and have the same fuzzy distribution as X. For a fuzzy random sample
X1, Xo,...,X,, the fuzzy sample mean is defined by

= 1

Xp== & X
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It follows that the fuzzy sample mean is an unbiased estimator for the fuzzy expec-
tation E(X) , ie., E(X,) = E(X). A strong law of large numbers by Klement et
al.(1986) implies that the fuzzy sample mean X, is a strong consistent estimator
for the fuzzy expectation E(X) with respect to the metric d;. The next theorem
shows that the fuzzy sample mean X, is a strong consistent estimator for the fuzzy
expectation E(X) with respect to the metric doo. This result is a generalization of
the result obtained by Joo and Kim (preprint).

Theorem 3.3. Let {X,} be a fuzzy random sample from the population with fuzzy
distribution as a fuzzy random variable X. If E||X|| < oo, then

lim deo(Xn, EX) = 0 a.s..
n—00
Proof. Let € > 0 be given. Then applying Lemma 3.2 to u = E(X), there exists a
partition 0 = ag < a1 < -+ < @, of [0, 1] such that
MLy B(X),LaB(X)) < €i=1,2,...,7. (3.3)

If0 < a <1, then og4_1 < a < a for some k. Since Lo X, C La: 1)_(,1 and
LoE(X) D Lo, E(X), we have, by (3.3),

6(LaXn, Lo E(X)) < §(L ot X, Lo, B(X))
< (Lot Xn, Lo, E(X))
<h(Lak+ X Lo E(X)) +e¢

Hence, we conclude that
doo(Xn, E(X)) < \Rer max h(L,+ X, E(Ly+ X))

+ = maxh(Lg,Xn, E(Lo, X)) +
1<k<r

By Theorem 2.1, we obtain
limy; 00doo (Xn, E(X)) < € a.s..

Since ¢ is arbitrary, this completes the proof. O
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Example 1. Let u € F(RP) be fixed and X(w) = u(z — Y(w)) be a fuzzy random
variable with the same fuzzy distribution as the population, where Y is a random
vector taking values in RP with E|Y| < oco. Since

Lo X(w) =Y (w) + Lyu,

we have

E(LoX) = EY + Lou.

Hence, E(X)(z) = u(z— EY). Now if {Y,} is a random sample from the population
with distribution of Y, and X, (w) = u(z — Y, (w)), then {X,} is a fuzzy random
sample from the population with fuzzy distribution of X, and the fuzzy sample mean
is

X, =u(z ~Y,),

where Y, = %Z?zl Y; is the usual sample mean of Y1,Ys,...,Y,. Hence, by the
above theorem,

lim doo(u(z — Yy),u(z — EY)) = 0 a.s.

n—oo

Example 2. The triangular fuzzy number v in R is a fuzzy set v : R — [0,1]

defined by
-1
g

1, ifz=m

fli<z<m

u(z) =

T—X :
s fm<z<r

0, otherwise,

where | < m < r. The above triangular fuzzy number u is denoted by < I,m,r > .
Let F;(R) be the family of all triangular fuzzy numbers in R. If X : Q — F;(R) and
X(w) =< l(w), m(w), r(w) >, then it follows that X is a fuzzy random variable if and
only if I, m,r are random variables in the usual sense. Furthermore, X is integrably
bounded if and only if [, 7 are integrable, in this case, E(X) =< E(l), E(m),E(r) > .
If X3, X,,..., X, constitute a fuzzy random sample from the population with fuzzy
distribution as X (w) =< l[{w), m(w),r(w) >, then we can write

X; =< lj(w),m;(w), ri(w) >,1=1,2,...,n,

where l;,m;, 75,1 = 1,2,...,n are random samples of [, m, r, respectively. Then the
fuzzy sample mean is given by

7 1 n = __ 1 n - | n .
where [,, = —ﬁ Zi:l liymy, = n Zizl M, Tn = 5 Zi:l Ti-
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Since
doo(Xn, E(X)) = max(|ln = EQ)|, |tn — E(m)], |[Fn — E(r)]),
it follows that by the classical strong law of large numbers,
doo(Xpn, E(X)) — Oa.s..

This coincides with the Theorem 3.3.
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