Browse > Article
http://dx.doi.org/10.12989/csm.2013.2.3.255

Approximate solution of fuzzy quadratic Riccati differential equations  

Tapaswini, Smita (Department of Mathematics, National Institute of Technology Rourkela Odisha)
Chakraverty, S. (Department of Mathematics, National Institute of Technology Rourkela Odisha)
Publication Information
Coupled systems mechanics / v.2, no.3, 2013 , pp. 255-269 More about this Journal
Abstract
This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.
Keywords
fuzzy quadratic Riccati differential equation; fuzzy number; triangular fuzzy number; homotopy perturbation method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tapaswini S. and Chakraverty S. (2012), "A new approach to fuzzy initial value problem by improved euler method", Int. J. Fuzzy Inform. Eng., 4(3), 293-312.   DOI
2 Bede, B. (2008), "Note on numerical solutions of fuzzy differential equations by predictor-corrector method", Inform. Sciences, 178(7), 1917-1922.   DOI   ScienceOn
3 Biazar, J. and Eslami, M. (2010), "Differential transform method for quadratic Riccati differential equation", Int. J. Nonlinear Sci., 9(4), 444-447.
4 Chang, S.L. and Zadeh, L.A. (1972), "On fuzzy mapping and control", IEEE T. Syst. Man Cy., 2(1), 30-34.
5 Chakraverty, S. and Nayak, S. (2012), "Fuzzy finite element method for solving uncertain heat conduction problems", Coupled Syst. Mech., 1(4), 345-360.   DOI   ScienceOn
6 Dubois, D. and Prade, H. (1982), "Towards fuzzy differential calculus: Part 3 differentiation", Fuzzy Set. Syst., 8(3), 225-233.   DOI   ScienceOn
7 He, J. H. (1999), "Homotopy perturbation technique", Comput. Method. Appl. M., 178(3-4), 257-262.   DOI   ScienceOn
8 He, J. H. (2000), "A coupling method of homotopy technique and a perturbation technique for nonlinear problems", Int. J. Nonlinear Mech., 35(1), 37-43.   DOI   ScienceOn
9 Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001), Applied interval analysis, Springer.
10 Kaleva, O. (1990), "The Cauchy problem for fuzzy differential equations", Fuzzy Set. Syst., 35(3), 389-396.   DOI   ScienceOn
11 Ma, M., Friedman, M. and Kandel, A. (1999), "Numerical solutions of fuzzy differential equations", Fuzzy Set. Syst., 105(1), 133-138.   DOI   ScienceOn
12 Seikkala, S. (1987), "On the fuzzy initial value problem", Fuzzy Set. Syst., 24(3), 319-330.   DOI   ScienceOn
13 Kaleva, O. (1987), "Fuzzy differential equations", Fuzzy Set. Syst., 24(3), 301-317.   DOI   ScienceOn
14 Tan, Y. and Abbasbandy, S. (2008), "Homotopy analysis method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 13(3), 539-546.   DOI   ScienceOn
15 Zimmermann, H.J. (2001), Fuzzy set theory and its application, Kluwer Academic Publishers, Boston/Dordrecht/London.
16 Batiha, B. (2012), "A numeric-analytic method for approximating quadratic Riccati differential equation", Int. J. Appl. Math. Res., 1(1), 8-16.
17 Abbasbandy, S. (2006a), "Iterated He's homotopy perturbation method for quadratic Riccati differential equation", Appl. Math. Comput., 175(1), 581-589.   DOI   ScienceOn
18 Abbasbandy, S. (2006b), "Homotopy perturbation method for quadratic Riccati differential equation and comparision with Adomian's decomposition method", Appl. Math. Comput., 172(1), 485-490.   DOI   ScienceOn
19 Aminikhah, H. and Hemmatnezhad, M. (2010), "An efficient method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 15(4), 835-839.   DOI   ScienceOn
20 Tapaswini, S. and Chakraverty, S. (2013), "Numerical solution of n - th order fuzzy linear differential equations by homotopyperturbation method", Int. J. Comput. Appl., 64(6), 5-10.