1 |
Tapaswini S. and Chakraverty S. (2012), "A new approach to fuzzy initial value problem by improved euler method", Int. J. Fuzzy Inform. Eng., 4(3), 293-312.
DOI
|
2 |
Bede, B. (2008), "Note on numerical solutions of fuzzy differential equations by predictor-corrector method", Inform. Sciences, 178(7), 1917-1922.
DOI
ScienceOn
|
3 |
Biazar, J. and Eslami, M. (2010), "Differential transform method for quadratic Riccati differential equation", Int. J. Nonlinear Sci., 9(4), 444-447.
|
4 |
Chang, S.L. and Zadeh, L.A. (1972), "On fuzzy mapping and control", IEEE T. Syst. Man Cy., 2(1), 30-34.
|
5 |
Chakraverty, S. and Nayak, S. (2012), "Fuzzy finite element method for solving uncertain heat conduction problems", Coupled Syst. Mech., 1(4), 345-360.
DOI
ScienceOn
|
6 |
Dubois, D. and Prade, H. (1982), "Towards fuzzy differential calculus: Part 3 differentiation", Fuzzy Set. Syst., 8(3), 225-233.
DOI
ScienceOn
|
7 |
He, J. H. (1999), "Homotopy perturbation technique", Comput. Method. Appl. M., 178(3-4), 257-262.
DOI
ScienceOn
|
8 |
He, J. H. (2000), "A coupling method of homotopy technique and a perturbation technique for nonlinear problems", Int. J. Nonlinear Mech., 35(1), 37-43.
DOI
ScienceOn
|
9 |
Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001), Applied interval analysis, Springer.
|
10 |
Kaleva, O. (1990), "The Cauchy problem for fuzzy differential equations", Fuzzy Set. Syst., 35(3), 389-396.
DOI
ScienceOn
|
11 |
Ma, M., Friedman, M. and Kandel, A. (1999), "Numerical solutions of fuzzy differential equations", Fuzzy Set. Syst., 105(1), 133-138.
DOI
ScienceOn
|
12 |
Seikkala, S. (1987), "On the fuzzy initial value problem", Fuzzy Set. Syst., 24(3), 319-330.
DOI
ScienceOn
|
13 |
Kaleva, O. (1987), "Fuzzy differential equations", Fuzzy Set. Syst., 24(3), 301-317.
DOI
ScienceOn
|
14 |
Tan, Y. and Abbasbandy, S. (2008), "Homotopy analysis method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 13(3), 539-546.
DOI
ScienceOn
|
15 |
Zimmermann, H.J. (2001), Fuzzy set theory and its application, Kluwer Academic Publishers, Boston/Dordrecht/London.
|
16 |
Batiha, B. (2012), "A numeric-analytic method for approximating quadratic Riccati differential equation", Int. J. Appl. Math. Res., 1(1), 8-16.
|
17 |
Abbasbandy, S. (2006a), "Iterated He's homotopy perturbation method for quadratic Riccati differential equation", Appl. Math. Comput., 175(1), 581-589.
DOI
ScienceOn
|
18 |
Abbasbandy, S. (2006b), "Homotopy perturbation method for quadratic Riccati differential equation and comparision with Adomian's decomposition method", Appl. Math. Comput., 172(1), 485-490.
DOI
ScienceOn
|
19 |
Aminikhah, H. and Hemmatnezhad, M. (2010), "An efficient method for quadratic Riccati differential equation", Commun. Nonlinear Sci. Numer. Simul., 15(4), 835-839.
DOI
ScienceOn
|
20 |
Tapaswini, S. and Chakraverty, S. (2013), "Numerical solution of n - th order fuzzy linear differential equations by homotopyperturbation method", Int. J. Comput. Appl., 64(6), 5-10.
|