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A Fuzzy System Representation of Functions of Two Variables
and its Application to Gray Scale Images
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Abstract

An approximate representation of discrete functions {f;{i,j=—1,0,1,"-,N+1}in two variables by a fuzzy system is

described. We use the cubic B-splines as fuzzy sets for the input fuzzification and spike functions as the output fuzzy
sets. The ordinal number of 7;; in the sorted list is taken to be the out put fuzzy set number in the (i, p)th entry of

the fuzzy rule table. We show that the fuzzy system is an exact representation of the cubic spline function
1
S(x, y) = _;27 JiB{x)B;(y) and that the approximation error S(x,y—fx, is surprisingly O(#*) when Ax,y is three

times continuously differentiable. We prove that when Ax,» is a gray scale image, then the fuzzy system is a
smoothed representation of the image and the original image can be recovered exactly from its fuzzy system
representation when it is a digitized image.
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1. Introduction

We have shown in our earlier work[1] that there is a
practical and easy method to represent a cubic spline
interpolation function by a fuzzy system. Considering the
fact that an arbitrary continuously differentiable function
can be approximated by a cubic spline interpolation
function on a bounded interval within a prescribed
accuracy, it is clear that any continuously differentiable
function can be represented by a fuzzy system.

It is known also that fuzzy systems can be used to
approXimate continuous functions on a compact set with
in arbitrary accuracy. Kosko[2] and Castro et. all3]
showed that for a continuous function Ax) on a compact
set and an >0, there exists a fuzzy system that
approximates Ax) within e. L. Wang[4] also shows this
by proving that a set of fuzzy systems, each of which
being identified as a function of fixed form with
different parameter values, is dense in the set of all
continuous functions.

In the following, we will consider functions of two
variables Ax,y) on an interval [a, bl x[c,dl.
For convenience, we assume d—c=b—a and divide the
intervals [a,b] and [c, 4] into = subintervals. Let

b;a and let B(#'s be

x;=a+tjh, y;=c+jh with h=

the cubic B-spline functions defined on [#; ,,¢;.5] by
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for ¢t in the intervals [¢,-,,¢; ), [¢, 1.t [t ¢:1], and
te{t;+1, tiyy) respectively with i=-1,0.1.---,N+1.

Then the spline interpolation function for Ax,y) can
1
be written as S(x,y)= i;ﬁ-(lci,jBi(x)Bj(y), with ¢,;,’s

obtained from solving a set of linear equations for the
interpolation constraints{5]. In our earlier work(1], we
showed that if one uses the following procedure to set
up a fuzzy system for cubic spline interpolation function

X R
of the form S(x,y)= quC"-'B"(x)B"( w9, then the fuzzy

system evaluates exactly the same values as S(x, ).

1.1 Fuzzy Sets for Input Fuzzification
Let x,=a+ih, y,=c+ih with h=

b;a where we

assumed d—c=b—a. If we define Bf{x) and B{y) as
in (1), then the B-spline function B/{x) has support
[x:-2,x,42] with the maximum value of % at x;. We

take these functions Bf{x) and B{» for ¢,7=-1,0,1,
-, N+1 as fuzzy sets for input variables x and ¥
respectively.

1.2 Generation of Fuzzy Rules
- B . . 1
Given a cubic spline function S(x, y) = {i}ilc;,,-Bi(x)B,-(y),
we sort the (n+3)? coefficients ¢,; in an increasing
order and delete the duplicate ones, i.e., delete c,, for
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(Fos1,;— Fa—1,)BLy) which is equal to %z_(fkﬂ,/—x_fk—L

DA e = Fer 0t Feev i —FeLn D))
Lemma 4 to each of the three terms

Applying
inside the

parentheses, we obtain Sx(x,,,yl):—é X (fo(xp, v -1) T A4S,
(6, v+ Flxp, v 1))+ O(HD), note that fuxs,

v+ Alee )= 2f 2, y) + O(kY) and hence we have
the result. Q.E.D.

Now,

Lemma 7. Let Rx,») and S(x,y) be as defined above.
Then we have S (x4, ¥) = fulxe, v) =0k and S, (x,, ¥

_fxy(xksyl) = O(h).

Prodf. Substituting B’ {(t;-1)=B"{t;s))= !

2 Bty =

1
,%, we have Solx,y)= ,_lglf,-V,-B",~(x,i,)B,(y,)=—}-117
1
]21 (Fo-r,— 2F i+ Fre1.)%  Bfyy, which can be written
as ﬁ X Fomr-1— 2 it v =)+ 4Un-1 = 20t frvr
Y4 Farrs Fae1.01 =2 b1+ fevr040)}. Now, use the rela-
tion fr—y ;=2 b+ fer1.= Ff o (xy, v) + O(A%) to obtain S.
(X4, ) = F x4, ¥)+ O(%) and hence the first part is pro-

ved. A similar proof for the second part is omitted.
Q.ED.

Lemma 8. Let fx,» and S(x,y be as defined above.
Then we have S.(xi,y) —f{xs, y)= Ok for all y=[ec,dl.

Proof. Without loss of generality, we may assume
vely,yis) for some [ Note that S.(x4, ) —Ffxs, )
= (S (g, ) — Selxe, ¥0) +(Saxe, ¥) — flwn, ¥0) + (Flxg, v0)
— flxy, »). Using Si(xp, ¥) — Selxp, v = (y— S (e, ¥ +
~(~y:2—y£5m(xk, y)+ O(k*) and a similar relation for
F{xx, v, we obtain the conclusion. Q.E.D.

Theorem 3.  Ax,y) is a three times continuously
differentiable function and if S(x3) = 3 7,BADB),

then we have S(x»— Ax,» =00 for all
[a, b]x [c,dl.

(x,me

Proof. Assume x€[x;,x,+1) and y=[y,,v,;) for some
k and I We write S(x,y)—Ax,» as a sum of the four
terms ; S(x,y) —SCer 3, Sxp, ¥) — SCxr, ¥2), S(xp, ¥) — A%
o, Rxe v)—FAxsy). When the first and the fifth are
added, we obtain (x— xS x, W— flx4, ¥)) + K #*) which
is O(%%). Similarly, the second and the fourth are added
to become (4% and the third is of O(#%) by Lemma 6.
Q.E.D.
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4. Application Examples

In this section, we consider the case where f;,={0,1}
for all i,j=-1,0,1,--,N+1, ie. when Rx,y is a
discrete function for a digitized image with 0's for white
pixels and 1's for black pixels. We will show that from
the approximate continuous representation of the digi-

1
tized image, ie. S(x,»= _%lf,-,,-B,-(x)B,-(y), one can
11==

recover the original image {f,; i,j=—1,0,-,N+1}.

1

Lemma 9. Let S(x.y)= 2. 7.B{0B(y), then we have
(Sut Syy)(xle»yl)zéjil‘z’(kal.l-—l+fk~l.l+fk*l.l+1+fk,1—1—8fk.l
+fo et ferr 1t et Fevn )

Prodf. This follows from a routine computation using
Bk(x k,l) = Bk(xk—rl):% , Bk(xk) =‘% s B”/e(xk—l) = B”k(xk+1)
=~#,B"k(xk)=——222—, while Byx)= B’yx)=0 for all
other indices ;. Q.E.D.

Lemma 10. If f;;={0,1} for alli;=-1,0,1, -, N+1,

then we have lS(xk,yl)—fk.AS%-

Prodf. From Theorem 3, it is clear that [S(x v) — 74

s%+0(h2) for all #>0. Hence, we must have [S(xy, y;)
- fk‘,ls%. QED.

The following theorem states that if a digitized image
is represented by a fuzzy system S(x,y) using f;;'s as
its rule table, then the pixel value at (x,,y) can be
[SCxe, v)+0.5] where the
brackets are for the Gaussian bracket function.

recovered by evaluating

Theorem 4. let {f,}i,j=—1,0,-+,N+1} be a digitized
image and let S(x,y) = ii_ll fi.:BLx) B(y) be the conti-

nuous cubic spline representation of the image. If we
define gk,,=[S(x,,,y1)+0.5], then gk‘1=fk,, for all
k 1==1,0,1,-+, N+1.

Prodf. By Lemma 8, we have —% <S(xp y) — fk,IS%-
<SCrnv)t 0.5f,+552
from which we obtain [fk‘,+—@9.é] <[S(x, ¥ +0.5]

Hence, we have f;;,/‘*"%i

s[f,e,,+8—é5]. Now, note that [fk_,+-oé—5]=[f,,_,] and

[at B2 1=1/01 since fi=0.1). QED.
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5. Conclusion

The fuzzy system we designed provides a very
efficient method to evaluate cubic spline functions. We
proved that when a set of discrete points is given in
(x,» coordinates, then a cubic spline function can be
defined to approximate the function with approximation
error O(4%). Even though the approximation error is not
as good as the cubic spline interpolation error which is
of O(rY), our representation of the function does not
require any computation at all including the matrix
inversion which is necessary for spline interpolations. It
is expected that our fuzzy system representation for
functions given in discrete points can be utilized in
various image processing techniques.

Acknowledgements

This work has been carried out under the nuclear
research and development program supported by the
Ministry of Science and Technology of Korea.

References

[1] B. S. Moon, “A practical algorithm for representing po-
lynomials of two variables by a fuzzy system with
accuracy XiY)”, Fuzzy Sets and Systems, vol. 119, no.
2, pp. 135-141, 2001.

{2] B. Kosko, “Fuzzy systems are universal approximators”,
{EEE Trans. on Computers, vol. 43, no. 11, pp. 1329-1333,
1994.

[3] J. L. Castro and M. Delgado, “Fuzzy systems with de-
fuzzification are universal approximators”, [EEE Trans.
on Systems, Man, and Cybernetics -Part B: Cybernetics,
vol. 26, no. 1, pp. 149-152, 1996.

[4] L. X. Wang, “Fuzzy systems are universal approxi-
mators”, Proc. IEEE Int. Conf. on Fuzzy Systems, San
Diago, pp. 1163-1170, 1992.

[S] P. M. Prenter, Splines and Variational Methods, John
Wiley and Sons, New York, 1975.

Byung Soo Moon

He is currently a principal researcher at
Korea Atomic Energy Reserch Institute.
He received his PhD in Mathematics
from Univ of Illinois at Urbana-Cham-
paign. His major interests are in the
applications of fuzzy systems to Nuclear
Engineering.

Young Taek Kim

He is currently a principal engineer at
Korea Atomic Energy Reserch Institute.
He received his Master’'s Degree in
Software Engineering from Univ of
Chungang. His major interest is in the
development of distance learning system.

Jang Yeol Kim

He is currently a principal researcher at
Korea Atomic Energy Research Insti-
tute. He received his PhD from Univ of
Chungang. His major interest is in
Software Validation and Verification

573



