• Title/Summary/Keyword: fuzzy solution

Search Result 394, Processing Time 0.03 seconds

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.

OPTIMIZATION OF THE TEST INTERVALS OF A NUCLEAR SAFETY SYSTEM BY GENETIC ALGORITHMS, SOLUTION CLUSTERING AND FUZZY PREFERENCE ASSIGNMENT

  • Zio, E.;Bazzo, R.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.414-425
    • /
    • 2010
  • In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into "families". On the basis of the decision maker's preferences, each family is then synthetically represented by a "head of the family" solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions.

Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기)

  • Kim, Byeong-Man;Kim, Jong-Wan;Huh, Nam-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • A fuzzy traffic controller with the control rules and the membership functions generated by using genetic algorithm is presented for crossroad management. Conventional fuzzy traffic controllers use control rules and membership functions generated by human operators. However, this approach does not guarantee the optimal solution to design fuzzy control system. Genetic algorithm is a good solution for an optimal problem requiring domain-specific knowledge that is often heuristic. In this paper, we use genetic algorithms to automatically determine the near optimal rules and their membership functions of fuzzy traffic controllers. The effectiveness of our method was shown through simulation of crossroad network.

Traffic Signal Control with Fuzzy Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 퍼지 소속함수를 갖는 교통 신호 제어)

  • Kim, Jong-Wan;Kim, Byeong-Man;Kim, Ju-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.78-84
    • /
    • 1998
  • In this paper, a fuzzy traffic controller using genetic algorithms is presented. Conventional fuzzy traffic controllers use membership functions generated by humans. However, this approach does not guarantee the optimal solution to design the fuzzy controller. Genetic algorithm is a good problem solving method requiring domain-specific knowledge that is often heuristic. To find fuzzy membership functions showing good performance, a fitness function must be defined. However it's not easy in traffic control to define such a function as a numeric expression. Thus, we use simulation approach, namely, the fitness value of a solution is determined by use of a performance measure that is obtained by traffic simulator. The proposed method outperforms the conventional fuzzy controllers.

  • PDF

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

Existence and Uniqueness of Fuzzy Solutions for the nonlinear Fuzzy Integro-Differential Equation on EnN

  • Kwun, Young-Chel;Han, Chang-Woo;Kim, Seon-Yu;Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.40-44
    • /
    • 2004
  • In this paper we study the existence and uniqueness of fuzzy solutions for the nonlinear fuzzy integro-differential equations on $E^{n}_{N}$ by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in $E^{n}_{N}$. $E^{n}_{N}$ be the set of all fuzzy numbers in $R^{n}$ with edges having bases parallel to axis $x_1$, $x_2$, …, $x_n$.

FUZZY GOAL PROGRAMMING FOR CRASHING ACTIVITIES IN CONSTRUCTION INDUSTRY

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.642-652
    • /
    • 2007
  • Many contracting firms and project managers in the construction industry have started to utilize multi objective optimization methods to handle multiple conflicting goals for completing the project within the stipulated time and budget with required quality and safety. These optimization methods have increased the pressure on decision makers to search for an optimal resources utilization plan that optimizes simultaneously the total project cost, completion time, and crashing cost by considering indirect cost, contractual penalty cost etc., practically charging them in terms of direct cost of the project which is fuzzy in nature. This paper presents a multiple fuzzy goal programming model (MFGP) that supports decision makers in performing the challenging task. The model incorporates the fuzziness which stems from the imprecise aspiration levels attained by the decision maker to these objectives that are quantified through fuzzy linear membership function. The membership values of these objectives are then maximized which forms the fuzzy decision. The problem is solved using LINGO 8 optimization solver and the best compromise solution is identified. Comparison between solutions of MFGP, fuzzy multi objective linear programming (FMOLP) and multiple goal programming (MGP) are also presented. Additionally, an interactive decision making process is developed to enable the decision maker to interact with the system in modifying the fuzzy data and model parameters until a satisfactory solution is obtained. A case study is considered to demonstrate the feasibility of the proposed model for optimization of project network parameters in the construction industry.

  • PDF

Fuzzy programming for improving redundancy-reliability allocation problems in series-parallel systems

  • Liu, C.M.;Li, J.L.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-94
    • /
    • 2011
  • Redundancy-reliability allocation problems in multi-stage series-parallel systems are addressed in this study. Fuzzy programming techniques are proposed for finding satisfactory solutions. First, a multi-objective programming model is formulated for simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is developed to get satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto optimal solution is found with maximal degree of satisfaction from the interception area of fuzzy sets. A case study that is related to the electronic control unit installed on aircraft engine over-speed protection system is used to implement the developed approach. Results suggest that the developed fuzzy multi-objective programming model can effectively resolve the fuzzy and uncertain problem when design goals and constraints are not clearly confirmed at the initial conceptual design phase.

  • PDF

FUZZY NONLINEAR RANDOM VARIATIONAL INCLUSION PROBLEMS INVOLVING ORDERED RME-MULTIVALUED MAPPING IN BANACH SPACES

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we consider a fuzzy nonlinear random variational inclusion problems involving ordered RME-multivalued mapping in ordered Banach spaces. By using the random relaxed resolvent operator and its properties, we suggest an random iterative algorithm. Finally both the existence of the random solution of the original problem and the convergence of the random iterative sequences generated by random algorithm are proved.