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Abstract. Redundancy-reliability allocation problems in multi-stage series-parallel 
systems are addressed in this study. Fuzzy programming techniques are proposed for 
finding satisfactory solutions. First, a multi-objective programming model is 
formulated for simultaneously maximizing system reliability and minimizing system 
total cost.  Due to the nature of uncertainty in the problem, the fuzzy set theory and 
technique are used to convert the deterministic multi-objective programming model 
into a fuzzy nonlinear programming problem. A heuristic method is developed to get 
satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto 
optimal solution is found with maximal degree of satisfaction from the interception 
area of fuzzy sets. A case study that is related to the electronic control unit installed 
on aircraft engine over-speed protection system is used to implement the developed 
approach.  Results suggest that the developed fuzzy multi-objective programming 
model can effectively resolve the fuzzy and uncertain problem when design goals and 
constraints are not clearly confirmed at the initial conceptual design phase. 
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1. INTRODUCTION 
 
For a system design with low reliability requirement, the designer can adopt series-

parallel-systems techniques to improve system reliability and redundancy allocation. 
However, without further consideration, series-parallel-systems design techniques will 
increase system complexity, cost, weight, volume, and power dissipation. These 
constrained elements shall be considered when series-parallel-systems are applied. 

In practice, solution methods for series-parallel-systems with redundancy-reliability 
allocation problems can be categorized into two methods: active redundant model and 
standby redundant model. An active redundant model adopts several parallel components, 
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in which each component shall be actively operated. The entire system will operate well if 
a specific number of components within this system operate normally. A standby 
redundant model adopts several parallel components as well. In order to make sure that 
the whole system can be operated functionally, certain numbers of components are 
required to be operated normally. Besides, when some of parallel components fail, 
components in standby will be operated by using switch devices. The failure rates of non-
operated components and switching devices are both zero. If the failure rate of switching 
devices is excluded, the system reliability of standby redundant model is higher than that 
of active redundant model. Although the system reliability of both models is high, these 
two models could cause higher cost, higher weight, and higher volume. Especially, when 
some switch devices are adopted by the standby redundant model, an additional cost will 
increase in accordance with the number of switch devices used. On the other hand, if the 
failure rate of switching devices is included, we need to further study the relationship 
among the whole system reliability, the contact reliability of switching devices, and the 
conditional dynamic/static system reliability. 

The objective of reliability maximization is always pursued while the system cost 
became higher, or the objective of system cost minimization is obtained while the system 
reliability was sacrificed for traditional single objective optimization method. If multi-
objective optimization method is adopted to solve reliability allocation trade-off problems 
of series-parallel systems, one could consider the optimization of system reliability and 
total system cost at the same time. Also one could consider the constrained factors of 
weight and volume. The system reliability requirement with the above design disciplines 
could be achieved. When the product reliability demonstration is carried out, one didn’t 
need to spend too much cost and time. Several objectives could be conflicted each other. 
The decision procedures were also very complicated. It also involved different levels of 
uncertainties, such as characteristics of expert information, qualitative statements and 
fuzzy, etc. In order to solve these uncertain factors, this study proposed fuzzy multi-
objective optimization decision method, which combined improved search heuristic 
algorithm. We hoped that this algorithm could solve the optimization decision problems of 
two or two above objectives. This algorithm could also find out an optimal solution, which 
could give the highest degree of satisfaction with respect to all the fuzzy sets (including 
fuzzy objectives and fuzzy constraints) in the fuzzy decision space. The purpose of this 
paper is to find out several effective solutions and a Pareto optimal solution with fuzzy 
multi-objective programming method to solve the optimal design of reliability allocation 
and total system cost for series-parallel systems. 

 
 

2. LITERTURE REVIEW 
 

During many practical design situations, reliability allocation problems turn into 
more complicated when several goals conflict each other. Sakawa (1988) considered 
surrogate worth tradeoff method for multi-objective models of reliability allocation 
problems. Inagaki et al. (1988) used interactive optimal design with a minimal cost and 
weight, and maximal system reliability. 
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In order to solve reliability redundant optimization problems, Misra and Sharma 
(1991) launched the research of using bound search techniques, which were integer 
programming methods. Li (1996) proposed a bound dynamic programming (BDP) method 
that could solve reliability redundant optimization problems. Through the usage of 
dynamic programming method and bound areas of the problems, the BDP solution 
procedures for reliability redundant optimization problems are more economic and 
efficient than Misra’s integer programming algorithm. Any heuristic techniques could be 
used to acquire a new and a better boundary point from any given boundary points. Li and 
Jia (1997) further used a partial bound enumeration (PBE) technique that could solve 
reliability redundant optimization problems. 

Baxter and Harche (1992) used exact algorithm to solve the optimal reliability 
allocation of series-parallel systems. Chern et al. (1991) also used exact algorithms and 
parametric non-linear integer programming methods to solve the application of the 
reliability optimization problems with multiple constraints for the series-parallel systems. 
Gopal et al. (1980) utilized improved heuristic method to solve optimal allocation of 
redundancy for series-parallel systems. Kuo et al. (1987) utilized heuristic method to solve 
optimal system reliability by redundancy allocation, utilized Lagrangian multiplier and 
branch-and-bound techniques to solve reliability optimization problems, respectively. 
Nakagawa and Miyazaki (1981) utilized heuristic method, surrogate constraints algorithm 
and multi-objective reliability optimization method, respectively, to solve reliability 
optimization problems and its experimental comparison. Petrovic (1991) utilized heuristic 
method to improve decision support of system reliability by redundancy allocation. 
Sharma and Misra (1990) utilized heuristic method to optimize system reliability and 
developed an effective algorithm to solve integer programming problems of reliability 
optimization, respectively. Xu, et al. (1990) utilized heuristic method by the allocation of 
reliability redundancy to solve optimal constraints of improving system reliability. 

Ida et al. (1994) utilized meta-heuristic method by GA to solve system reliability 
optimization with several failure modes. Painton and Campbell (1995) utilized meta-
heuristic method by GA to solve system reliability optimization problems. Yokota et al. 
(1996) utilized meta-heuristic method to solve system reliability optimization with several 
failure modes, mixed integer non-linear programming problems and its application, 
respectively. 

Gen et al. (1989) utilized multi-objective programming method to solve optimal 
reliability for large-scale series-parallel systems.  Misra and Sharma (1991) utilized meta-
heuristic method and an effective reliability design tool to solve integer programming 
problems, utilized multi-objective programming method to solve multi-objective 
redundancy optimization problems, respectively. Sakawa (1981) utilized multi-objective 
reliability optimization method to solve the optimal reliability design of large-scale series-
parallel systems. El-Neweihi et al. (1986) utilized optimal allocation of inter-exchangeable 
component method to solve the optimal component allocation of series-parallel and 
parallel-series systems. Prasad and Raghavachari (1998) utilized heuristic method to solve 
optimal component allocation of series-parallel networks and utilized optimal allocation of 
inter-exchangeable component method to solve the optimal component allocation of 
series-parallel and parallel-series systems, respectively. 
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Kuo and Prasad (2000) consider that exact algorithm of reliability optimization 
problems was not often easy to solve. Even though there was a solution, the effectiveness 
of exact algorithm was also restricted. In order to solve the optimal redundant allocation 
problems, they therefore recommended us to focus on the following four approaches: 
heuristic method, meta-heuristic method, multi-objective optimization method, and 
optimal allocation of inter-exchangeable component method. Park (1987) utilized fuzzy 
set theory to analyze two components series system of reliability allocation problems, 
which are subjected to single constraint. Zedeh and Bellman (1990) designed a fuzzy-
decision environment to provide different kinds of total solutions for design problems. 
Huang (1997) proposed fuzzy multi-objective optimization decision method, which could 
provide two or two above goals of reliability optimization decisions. 

 
 

3. RELIABILITY MODEL FOR SERIES-PARALLEL SYSTEMS 
 

Figure 1 displays a diagram for an N stages series-parallel system with redundancy-
reliability allocation problems. In this system, several parallel and identical components 
are arrayed in each stage. While the series-parallel system with redundancy can be applied 
to increase the system reliability, this technique may inevitably add more complexity, 
weight, volume, or cost to the design system. It would be better that a multi-objective 
programming model is developed to tackle this problem. 

When modeling the target problem, the objectives are two-fold. One is to determine 
optimal design reliability for each component and the other to select an optimal number of 
components within each stage. That is, the overall system reliability is maximized and the 
overall system cost is minimized. In addition, several constrained design criteria, such as 
minimum requirements for system reliability, system cost, system volume, and system 
weight, are considered in this model. In order to develop a mathematical design model for 
the engine protection systems, we define the following decision variables and parameters. 
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Figure 3.1. Diagram for N-stages series-parallel systems 

 
Decision Variable: 

Ri＝represent the component reliability within the i-th stage； 
ni＝represent the number of components within the i-th stage; 
f1＝represent the overall system reliability; 
f2＝represent the overall system cost. 
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Parameter: 
Ci(Ri)＝represent the component cost within the i-th stage; 
wi＝represent the component weight within the i-th stage; 
vi＝represent the component volume within the i-th stage; 
R＝represent the lower limit for the overall system reliability; 
C＝represent the upper limit for the overall system cost; 
W＝represent the maximum limit for the system weight; 
V＝represent the maximum limit for the system volume; 
N＝represent the number of stages in the design system; 
Nhigh＝represent the maximum number of components within each stage; 
Nlow＝represent the minimum number of components within each stage; 
Rhigh＝represent the maximum limit of reliability within each stage; 
Rlow＝represent the minimum requirement of reliability within each stage. 
 

Then a multi-objective mathematical reliability design model may be given as follows. 
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The objective function (3.1) is used to maximize the overall system reliability for the 

engine protection systems, while the objective function (3.2) is used to minimize the 
overall system cost. Constraint (3.3) is used to set the minimum requirement for the 
system reliability. Constraint (3.4) is used to set the maximum limit for the system weight. 
Constraint (3.5) is used to set the maximum limit for the system volume. Constraint (3.6) 
is used to set the maximum limit for the system cost, where Ci(Ri) is the unit cost for the 
component with Ri reliability in the i-th stage. Constraint (3.7) denotes the allowable range 
of component number for each stage and constraint (3.8) is used to specify the range of 
reliability for each component in each stage. 
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In constraint (3.6), Ci(Ri) can be formulated as: ( ) i
iiiRiC βλα= , where αi and βi are 

constant and characteristics factors for each component in the i-th stage and λi is the 
failure rate of component in the i-th stage. Furthermore, by the relationship of Ri＝

)λ(exp ti− , we can obtain ( ) [ ] iiRtiiRiC β)ln(α −⋅= , where t is the active operation time. 
Hence, constraint (3.6) can be reformulated as: 
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The developed reliability design model is one type of multi-objective mixed integer 
nonlinear programming problem. This is a NP-hard problem. In addition, information 
about the reliability, cost, weight, and volume parameters in the model can be uncertain or 
incomplete in terms of data collection in the early design stage of system life cycle. It 
would be better to apply fuzzy set techniques to solve this problem. 

 
 

4. FUZZY PROGRAMMING MODEL FOR SERIES-PARALLEL SYSTEMS 
 
The fuzzy set theory (Zadeh, 1985) is applied to construct a fuzzy nonlinear 

programming model for solving the series-parallel systems. First, those objective 
functions and constraints in the multi-objective programming model are treated as fuzzy 
objective functions and fuzzy constraints using membership functions to quantify 
uncertain parameters. The following notations for developing a fuzzy nonlinear model are 
provided. 

 
Notation: 

   ＝ fuzzy information; 
∩     ＝ fuzzy intersection; 

iF    ＝ the i-th fuzzy objective function (i＝1,…, k); 

jG  ＝  the j-th fuzzy constraint（j＝1,…, m）; 
D   ＝  the fuzzy decision set; 

iμ     ＝ the i-th fuzzy membership function; 

iα     ＝ the degree of satisfaction for the i-th objective function; 

jα
 ＝ the degree of satisfaction for the j-th fuzzy constraint; 

Φ      ＝ the fuzzy set for the decision space; 
Α(Φ) ＝ the overall satisfaction; 
RS         ＝ the reliability goal which is set up by designer; 
∇R    ＝ difference between reliability goal and minimal reliability limit; 
CS         ＝ the cost goal which is set up by designer; 
∇C    ＝ difference between cost goal and maximal cost limit; 
ws      ＝ the system weight; 
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vs      ＝ the system volume. 
 
The membership function for the fuzzy reliability objective function and the degree 

of satisfaction of reliability function may be given as follows. The operational range varies 
from minimal reliability limit to reliability goal. 
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The membership function for fuzzy cost objective function and the degree of 
satisfaction of cost function may be expressed as follows. The operational range varies 
from cost goal to maximal cost limit. 
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The membership function for the degree of satisfaction of weight constraint may be 
expressed as follows. The operational range varies from 0 to maximal weight limit. 
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The membership function for the degree of satisfaction of volume constraint may be 
expressed as follows. The operational range varies from 0 to maximal volume limit. 
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Assume Φ is a fuzzy set of decision space and α(Φ) denotes the degree of overall 
satisfaction for the developed engine protection systems. The degree of overall satisfaction, 
α(Φ), within this decision space may be expressed as follows. 
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If the fuzzy objective functions (4.1), (4.2) and the fuzzy constraints (4.3), (4.4) are 
known with certainty, the degree of satisfaction for those fuzzy functions are available. 
Then the overall satisfaction can be obtained via seeking the intersection area of those 
fuzzy functions. Mathematically, it is equivalent to find feasible solutions, optimal 
solution (R*) and the maximal α(Φ) in the following fuzzy nonlinear programming 
problem. 

Maximize          α(Φ)                                                                             (4.6) 
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The objective function (4.6) is used to maximize the degree of overall satisfaction for 
the design system. Constraint (4.7) is used to set the minimum satisfaction requirement for 
the reliability and cost objectives. Constraint (4.8) is used to set the minimum satisfaction 
requirement for the weight and volume functions. Constrain (4.9) is used to specify the 
degree of satisfaction of reliability function. Constraint (4.10) is used to specify the degree 
of satisfaction of cost function. Constraint (4.11) is used to specify the degree of 
satisfaction of weight function. Constraint (4.12) is used to specify the degree of 
satisfaction of volume function. Constraint (4.13) provides the range between 0 and 1 for 
the degree of overall satisfaction about the objective functions. Constraint (4.14) provides 
the range between 0 and 1 for the degree of overall satisfaction. The developed model can 
allow one to achieve a maximum overall satisfaction value while satisfying multi-
objective fuzzy objective functions and fuzzy constraints within a fuzzy decision space. 

The developed fuzzy programming model is one type of nonlinear problem, in which 
the fuzzy multi-objective programming problem is converted into a deterministic single 
objective problem. For the developed fuzzy programming model, an α–search heuristic 
method is devised to generate a group of satisfactory solutions. The procedure of the α-
search heuristic method is given as follows: 

 
Step 0. Initialization: 

Set K = the maximal number of iterations, N = the number of stages, Rlow = lower 
bounds for reliability, Rhigh = upper bounds for reliability, △Ri = interval of 
increment for reliability,  Nlow = minimal components within each stage, Nhigh = 

maximal components within each stage, Φ﹛﹛  = solution set, Q = maximal 
number of elements in solution set. 

Step 1. Initialization: 
Provide an initial solution: k = 1, Ri

k  = Rlow, ni
k = Nlow, i = 1,…,N. Place them into 

the solution set Φ( ). 
Step 2. Validation: 

Compute and compare the overall satisfaction αk (Φ) for the incumbent solution. If 
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αk(Φ) > αk-1(Φ), replace the incumbent solution with previous solution in the 
solution set. If ni

k = Nhigh and Ri
k = Rhigh, i = 1,…,N, go to Step 4. Otherwise, go to 

Step 3. 
Step 3. Improvement: 

If Ri
k = Rhigh, then ni

k = ni
k+1 and Ri

k = Rlow. Otherwise, Ri
k  = Ri

k+1 +△Ri, k = k+1. 
Compute the values for: 

1. Reliability fuzzy set and its degree of satisfaction; 
2. Cost fuzzy set and its degree of satisfaction; 
3. Weight fuzzy set and its degree of satisfaction; 
4. Volume fuzzy set and its degree of satisfaction. 

Return to Step 2 
Step 4. Closing: 

Generate a group of satisfactory solutions. 
 
A computer programming language, Delphi 7.0, is used to code and compile the 

above procedure in the developed α–search heuristic. A graphic user-interface is also 
provided for simulating alternative solutions 

 
 

5. CASE STUDY 
 

In this study, the developed approach is implemented to a design problem of over-
speed protection system in turbo engines. The mission of this problem is to design a 
protection system during the over-speed operation of turbo engines. Figure 2 displays a 
functional block diagram for an over-speed protection system that is installed in turbo 
engines. This protection system consists of one electronic control valve and three 
mechanical valves, which provide over-speed protection for the turbo engine in a 
continuous way. Due to the incomplete or uncertain information about the design 
parameters during the early design phase, fuzzy set techniques combined with reliability 
design model is utilized to provide solution methods. 

 
 

Over Speed
Protection

System

Turbo Engine

Air-Fuel Mixer
and Electrical Ignition System

V1 V2 V3 V4 

 
 

Figure 5.1. Diagram for over-speed protection system of turbo engine 
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Table 5.1 provides the design data for this case study, which includes number of 
stages, reliability and cost goal, limits for reliability, cost, weight, and volume, and 
operational time. Table 5.2 provides the physical characteristics of redundant components 
for different stages. Figures 5.2, 5.3, 5.4, and 5.5 provide the membership function for 
reliability, cost, weight, and volume, respectively. The intersection area of these four 
membership functions and its individual fuzzy set can lead us to find out feasible solutions 
as long as we maximize the degree of overall satisfaction, α(Φ), which is shown in Figure 
5.6. 

 
Table 5.1. Design data of case study. 

Number of stages N = 4 
Reliability goal which is set up by designer R s = 0.99 
Cost goal which is set up by designer C s = 300 
Lower limit of reliability R = 0.90 
Upper limit of cost C = 400 
Upper limit of weight W = 500 
Upper limit of volume V = 250 
Operation time T = 1000 Hours 

 
Table 5.2. Physical characteristics of redundant components for each stage 
Stage iα  iβ  iv  iw  
1st 1.0×10-5 1.5 1 6 
2nd 2.3×10-5 1.5 2 6 
3rd 0.3×10-5 1.5 3 8 
4th 2.3×10-5 1.5 2 7 
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Figure 5.2. Membership function for reliability 
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Figure 5.3. Membership function for cost 

 
 

ws500
0.0

0.5

1.0

μG 1(ws)

 
Figure 5.4. Membership function for weight 
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Figure 5.5. Membership function for volume 
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Figure 5.6. Decision space D  
 

Table 5.3 then provides some results obtained from the application to the fuzzy 
nonlinear programming problem. If we consider all the enumerations of α(Φ) which is just 
bigger than 0.995, then we can  find out eight combinations of system reliability, system 
cost, system weight, and system volume. Each combination is associated with one value 
for α(Φ). We can see that the highest value of α(Φ) didn’t necessarily imply the best 
combination of reliability, cost, weight, and volume for the design system. The values for 
reliability and cost didn’t vary much with the change of α(Φ), While the values of weight 
and volume change significantly. Hence, system weight and system volume play the key 
role in determining the most satisfactory solution. From Table 3, the most satisfactory 
solution appears when α(Φ) equals 0.997084 as Rs=0.989816, C=300.087、, W=224.753, 
and V=89.0. This is also a Pareto optimal solution from the interception area of fuzzy sets 
by applying fuzzy goal programming method. 

 
Table 5.3. Satisfactory solutions obtained by the heuristic 

Satisfactory solution 
with 

α(Φ) > 0.995 

Characteristics for each satisfactory solution 

Reliability Cost Weight Volume 

0.995058 0.989886 300.368 257.993 101.0 
0.995257 0.989704 300.145 312.491 139.0 
0.995926 0.989885 300.280 333.641 152.0 
0.996449 0.989880 300.222 248.120 116.0 
0.996797 0.989909 300.219 267.037 115.0 
0.997025 0.989825 300.103 291.937 134.0 
0.997084 0.989816 300.087 224.753 89.0 
0.997818 0.989822 300.020 319.666 147.0 

 
The obtained results suggest that the developed fuzzy nonlinear programming 

technique can provide higher quality solutions regardless of size and complexity of 
problems. When the information about the design parameters is uncertain or incomplete 
for the series-parallel systems with redundancy, the developed fuzzy goal programming 
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technique can be apply to provide satisfactory solutions for decision maker. Results also 
suggest that fuzzy multi-objective programming can effectively resolve the fuzzy and 
uncertain problem when design goals and constraints are not still clearly confirmed at the 
initial conceptual design phase. 

A computer programming language, Delphi 7.0, is used to code and compile the 
algorithm. A graphic user-interface is illustrated in Figure 8. Finally we can draw a 
reliability block diagram for this case based on the outcomes of the following Delphi 
programs, which is shown in Figure 5.8. 

 

 
 

Figure 5.7. A graphic user-interface for the case study 

Figure 5.8. A reliability block diagram for the case study 
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6. CONCLUDING REMARKS 
 

When design-in system reliability is low, series-parallel systems are adopted as a 
design guideline for improving system reliability. However, this design guideline will 
increase the total system cost and weight. Hence this design guideline seldom meets the 
practical requirement. In this study, fuzzy goal programming techniques are applied to 
deal with multi-stage series-parallel systems with redundancy problem. The developed 
fuzzy goal programming model can provide the most satisfactory solutions for 
determination of system/component reliability and number of components at each stage. A 
heuristic search method and the associated graphical user-interface are devised. 

A Pareto optimal solution is found with several degree of satisfaction from the 
interception area of fuzzy sets. The obtained Pareto optimal solution of fuzzy multi-
objective programming method is better than that of goal programming method. A case 
study that relates to the electronic control unit installed on aircraft’s engine over-speed 
protection system is used to implement the developed approach. Results suggest that fuzzy 
multi-objective programming can effectively resolve the fuzzy and uncertain problem 
when design goals and constraints are not still clearly confirmed at the initial conceptual 
design phase. These models can also be applied efficiently and effectively for proper 
decision-making procedures when ill-structured situations occur. 
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