• 제목/요약/키워드: fuzzy models

검색결과 658건 처리시간 0.023초

On A New Framework of Autoregressive Fuzzy Time Series Models

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • 제13권4호
    • /
    • pp.357-368
    • /
    • 2014
  • Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

퍼지객체지향자료모형에서 구간값 퍼지집합을 이용한 속성값 계산 (Calculating Attribute Values using Interval-valued Fuzzy Sets in Fuzzy Object-oriented Data Models)

  • 조상엽;이종찬
    • 인터넷정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.45-51
    • /
    • 2003
  • 일반적으로 퍼지객체지향자료모형에서 속성값은 퍼지집합을 표현한다. 만일 퍼지객체지향자료모형에서 속성값을 구간값 퍼지집합으로 표현할 수 있다면, 퍼지객체지향자료모형에서 사용하는 속성값을 더 유연하게 표현하는 것이 가능하다. 퍼지객체지향자료모형의 상속구조에 나타나는 프레임내에 있는 속성값을 구하기 위해 구간값 퍼지집합을 사용하는 우선순위 논리곱연산을 이용하여 계산한다. 이 방법은 속성값의 소속정도가 기존의 퍼지집합이 아닌 구간값 퍼지집합으로 표현하는 지식정보처리분야에서 사용할 수 있다.

  • PDF

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

FUZZY REGRESSION ANALYSIS WITH NON-SYMMETRIC FUZZY COEFFICIENTS BASED ON QUADRATIC PROGRAMMING APPROACH

  • Lee, Haekwan;Hideo Tanaka
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.63-68
    • /
    • 1998
  • This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming fomulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two approximation models called an upper approximation model and a lower approximation model are considered as the regression models. Thus, we also propose an integrated quadratic programming problem by which the upper approximation model always includes the lower approximation model at any threshold level under the assumption of the same centers in the two approximation models. Sensitivities of Weight coefficients in the proposed quadratic programming approaches are investigated through real data.

  • PDF

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

퍼지론에 의한 강수 예측 : II. 퍼지 시계열의 적용성 (Precipitation forecasting by fuzzy Theory : II. Applicability of Fuzzy Time Series)

  • 김형수;나창진;김중훈;강인주
    • 한국수자원학회논문집
    • /
    • 제35권5호
    • /
    • pp.631-638
    • /
    • 2002
  • 시계열의 예측은 통상 추계학적 모형에 의해 수행하여 왔다. 그러나 본 연구에서는 퍼지 개념을 이용한 퍼지 시계열 모형에 의해 강수량 예측을 수행하였다. 기존에 제안된 퍼지 시계열 모형을 이용하여 예측을 수행하고, 예측 능력을 향상시키기 위하여 퍼지 시계열과 뉴로-퍼지 시스템을 연계한 새로운 방법론을 제안하여 상호 비교ㆍ분석하였다. 이를 위하여 미국 일리노이주의 강수량 시계열 예측에 적용하였으며, 예측 결과, 기존의 모형보다 본 연구에서 제안한 방법론의 결과가 더 정확함을 알 수 있었다.

Fuzzy Local Linear Regression Analysis

  • Hong, Dug-Hun;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.515-524
    • /
    • 2007
  • This paper deals with local linear estimation of fuzzy regression models based on Diamond(1998) as a new class of non-linear fuzzy regression. The purpose of this paper is to introduce a use of smoothing in testing for lack of fit of parametric fuzzy regression models.

  • PDF

개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계 (Design of Fuzzy Models with the Aid of an Improved Differential Evolution)

  • 김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계 (Design of IG-based Fuzzy Models Using Improved Space Search Algorithm)

  • 오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.