
  

 
A Simultaneous Design of TSK - Linguistic Fuzzy Models with  

Uncertain Fuzzy Output   

Keun-Chang Kwak*, and Dong-Hwa Kim**  
* Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada 

(Tel : +1-780-437-3462; E-mail: kwak@ece.ualberta.ca) 
**Department of Instrumentation and Control Engineering, Hanbat National University, Daejeon, Korea 

(Tel : +82-42-000-0000; E-mail: kimdh@hanbat.ac.kr) 
 
Abstract: This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with 
uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic 
models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main 
phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density 
function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on 
the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context 
in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG 
predication data and coagulant dosing process in a water purification plant.   
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 1. INTRODUCTION 

the proposed model yields better performance in comparison 
with linear regression, conventional LM, and Radial Basis 
Function Neural Networks (RBFNN) for coagulant dosing 
process in a water purification plant [7] and automobile MPG 
prediction data. 

 
 Recently, fuzzy modeling is a popular computing 

framework on the basis of the concepts of fuzzy rules and 
fuzzy reasoning [1]. The essence of fuzzy modeling is 
concerned with the development of relationships between 
information granules regarded as fuzzy sets or fuzzy relations. 
Over the past few decades, it has found successful application 
in a wide variety of fields, emerging as interesting, attractive, 
and powerful modeling environment. There have been a 
substantial number of various schemes of fuzzy modeling 
along with specific algorithmic variation that help eventually 
capture some characteristics of the problem [2-3]. 
Transparency and accuracy of the models are the two essential 
and equally important pillars of fuzzy models. While the 
accuracy has been addressed in many methods, the issue of 
transparency and interpretability is still quite open. 
Interpretability implies a certain level of granularity of basic 
constructs on the basis of information granules. In particular, 
this was used in case of Linguistic Models (LM) proposed by 
Pedrycz [4] which ultimately dwells on the concept of 
information granules. The goal of this linguistic model is to 
design a new category of fuzzy models that focus on designing 
meaningful linguistic labels in the space of experimental data 
[4]. For this purpose, fuzzy clustering plays an important role 
in the design of linguistic models. Although the effectiveness 
of linguistic model has demonstrated, this model has a poor 
approximation and generalization ability, biased error, and a 
difficulty of design due to uniform form of linguistic contexts 
constructed in the output domain. Therefore, we develop a 
TSK (Takagi-Sugeno-Kang)-based Linguistic Fuzzy Model 
(TSK-LFM) with uncertain model output to solve several 
problems mentioned above. For this purpose, we use several 
main stages such as (a) the automatic generation of the 
contexts by probabilistic distribution (b) fuzzy rule extraction 
based on Context-based Fuzzy C-Means (CFCM) clustering 
[5][6] (c) addition of bias term to reduce approximation error 
(d) combination of TSK and linguistic context in the 
consequent part. Finally, the experimental results reveal that  

 
2. TSK-LINGUISTIC FUZZY MODEL  

 
In this section, we briefly describe the underlying concept 

and architectural fundamentals of linguistic models as 
originally introduced by Pedrycz in [4]. In contrast to the 
currently existing schemes of neuro-fuzzy models, which are 
in essence nonlinear numeric models, linguistic modeling 
revolves around information granules with fuzzy sets 
constructed in input and output spaces. The emphasis is on the 
formation of these granules while the linkages between them 
are intuitively straightforward as being the result of the 
construction of the information granules themselves. The 
conditional (context-based) fuzzy clustering forms a backbone 
of the linguistic model. Let us concentrate on the enhanced 
architecture and relate it to the development of the linguistic 
models. For simplicity, we assume that the TSK-LFM under 
consideration has two input x and y and one output z. The 
TSK-LFM architecture is shown in Fig. 1. Here the number of 
context “p”, t=1,2,…, p, and the number of cluster per context 
“c”, i=1,2,…,c. Moreover, we assume that the number of the 
cluster center in each context is equal. 

 
2.1 Linguistic contexts in the output domain 

The linguistic contexts are used to extract fuzzy rules in 
the CFCM clustering. In the conventional LM [4], these 
contexts were generated through a series of triangular 
membership functions with equally spaced along the domain 
of an output variable [4]. However, we may encounter a data 
scarcity problem due to small data included in some linguistic 
context. Thus, this problem brings about the difficulty to 
obtain fuzzy rules from the CFCM clustering. Therefore, we 
use probabilistic distribution of output variable to produce the 
flexible linguistic contexts.  
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As shown in Fig. 3, we may encounter a data scarcity problem 
in the right area when we use equally spaced linguistic 
contexts along the domain of an output variable. To solve this 
problem, we construct flexible linguistic context based on 
probability distribution. Fig. 4-6 visualize the probability 
density function (PDF), conditional density function (CDF), 
and the linguistic contexts, respectively. As shown in Fig. 6, 
the linguistic contexts are produced by probabilistic 
distribution when p=6. Therefore, we can solve the difficulty 
to obtain fuzzy rules using the CFCM clustering. 

 

Fig. 1 Architecture of TSK-LFM 
 
   Fig. 2 and 3 show an example of output data and its 
histogram, respectively. We shall explain the well-known 
automobile MPG to be considered in the experimental part. 
The output variable to be predicted in terms of the preceding 
six input variables is the automobile’s fuel consumption in 
MPG.  

Fig. 4 PDF of MPG data 

 

 

 
Fig. 5 CDF of MPG data 

 

Fig. 2 output data (MPG) 

  
Fig. 6 linguistic contexts Fig. 3 histogram of MPG data 
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2.2 Context-based FCM (CFCM) clustering 
     The CFCM clustering method, as proposed by Pedrycz 
[4][5][6], is an effective approach to estimate the cluster 
centers. As shown in Fig.1, CFCM clustering is performed in 
the second layer. The optimization completed by the CFCM 
clustering is realized iteratively by updating the partition 
matrix and the prototypes. The update of the partition matrix is 
completed as follows  
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where represents the element of the partition matrix 
induced by the i-th cluster in the t-th context. Here 

denotes a membership value of the k-th data to the t-th 
context. The prototypes are calculated in the form 

iku

tkw

 

∑

∑

=

== N

1k

m
ik

N

1k
k

m
ik

i

u

u x
v                               (2) 

 
where the fuzzification factor “m” is taken as 2.0. For further 
details on the CFCM clustering, see [5][6]. When applying the 
CFCM clustering to numerical input-output data pairs, each of 
the cluster centers presents a prototype that exhibits certain 
characteristics of the system to be modeled. Fig. 7 displays the 
blueprint of the linguistic model equipped with three contexts 
and two clusters per context. 
 

 
        1T        2T        3T  context 

fuzzy sets

Input space 

 
 

Fig. 7 A blueprint of the linguistic model  
 
 
2.3 TSK- linguistic type in the consequent part  

The conventional LM was designed by linguistic contexts 
in the consequent part. Although these contexts give 
meaningful linguistic labels, the obtained results did not show 
a good performance. Meanwhile, TSK type is by far the most 
popular candidate for fuzzy modeling and effective to develop 
a systematic approach [8]. Based on these two complementary 
approaches, we propose the TSK-based linguistic type in the 
consequent part as shown in Fig.1. Thus, the TSK-LFM can 
possess the intensive computation ability together with 
meaningful linguistic labels. The t-th linguistic context is 

visualized in Fig. 8.  
 

tr−tr +trtr−tr +tr  
Fig. 8 The t-th linguistic context in consequent part 

 
where [ ]+− ttt r,r,r  is a 3-element vector that determines the 
break points of this membership function. Thus the t-th 
consequent part combined with TSK-type is expressed as 
follows  
 

[ ] yqxpr,r,rf tttttt ++= +−                  (3) 
 

Here the parameters of linguistic contexts are obtained by 
probabilistic distribution as mentioned before. The linear 
coefficients { } of TSK-type are estimated by Least 
Square Estimator (LSE) [10]. 

tt q,p

 
2.4 Uncertain fuzzy output 
      The results obtained by conventional LM have showed 
a biased prediction error. This problem brings about a poor 
approximation and generalization ability. Therefore, we add 
bias term to conventional LM so that the TSK-LFM can be 
obtained unbiased prediction error. The bias term is computed 
in a straightforward manner by the difference between target 
output and predicted output as follows 
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where  denotes a modal value of fuzzy number 
produced for k-th input data point. The resulting fuzzy number 
with bias term is expressed as the following form 

kpredict
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We denote the algebraic operations by and ⊗ ⊕ to 
emphasize that the underlying computation operates on a 
collection of fuzzy numbers. Given the multiplication and 
addition for two operations, the final fuzzy number (model 
output) is computed as follows 
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Furthermore, the lower and upper bound of model output are 
computed by the following form 
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=

−− +++=
p

1t
0tttt b)yqxpr(zf

429



ICCAS2005                                        June 2-5, KINTEX, Gyeonggi-Do, Korea       
 

 

                  (8) ∑
=

++ +++=
p

1t
0tttt b)yqxpr(zf

 
Based on these bounds, we can represent the uncertain fuzzy 
output represented by fuzzy number. 
 

3. EXPERIMENTS AND RESULTS 
 
3.1 Automobile MPG prediction  

    We shall use the well-known automobile MPG data as an 
nonlinear regression example. In this example, six input 
variables consist of cylinder number, displacement, 
horsepower, weight, acceleration, and model year. The output 
variable to be predicted in terms of the preceding six input 
variables is the automobile’s fuel consumption in MPG. The 
data set consists of 392 examples of different car makes after 
removing instances with missing values. We divide the data 
set into training (odd number) and test data sets (even number) 
in the normalized space between 0 and 1, respectively. The 
training data set is used for model construction, while the test 
set is used for model validation. Thus, the resultant model is 
not biased toward the training data set and it is likely to have a 
better generalization capacity to new data [11][12]. Fig. 9 and 
10 show the RMSE versus the number of cluster (2~10) in 
each context for training and test set, respectively. As shown 
in these figures, the best model we can achieve occurs when 
the test error is minimal (p=6, c=2) [10]. Table 1 summarizes 
the RMSE in comparison with other models. The RBFNN 
used in Table 1 was designed by the centers of the receptive 
field functions using FCM clustering. The weights were 
estimated through LSE method. Fig. 11 shows the RMSE 
obtained by RBFNN for training and test data. In the design of 
conventional LM, we encountered a data scarcity problem due 
to small data included in of right side of linguistic context. 
Thus, we obtained the best model when p=6 and c=5. As listed 
in Table 1, we can recognize from the results that the 
TSK-LFM outperformed the previous works. Fig. 12 and 13 
visualize the actual output and the uncertain model output 
represented by lower and upper bound for training and test 
data, respectively. As shown in these figures, the TSK-LFM 
showed the good approximation and generalization ability. 

Fig. 9 RMSE by variation of “p” and “c”( training data) 

 
Fig. 10 RMSE by variation of “p” and “c”(test data) 

 

 
Table 1 Comparison of RMSE (*: no. of hidden nodes) 
(Type1: LM with bias term and flexible contexts, type2: LM 
with bias term, flexible contexts, and TSK-based linguistic 
type) 

Fig. 11 RMSE obtained by RBFNN 
 

3.2 Coagulant dosing process in a water purification plant 
 [p, c] RMSE 

(training)  
RMSE 
(test) 

Linear regression . 3.452 3.444 

RBFNN  39* 3.211 3.293 

LM [4] [6,5] 4.273 4.368 

Type1 [6,2] 3.224 3.080 
 

Type2 [6,2] 2.717 3.048 

    The field test data of a coagulant dosing process to be 
modeled is obtained at the Amsa water purification plant, 
Seoul, Korea, having a water purification capacity of 
1,320,000 ton/day. We use the successive 346 samples among 
jar-test data for the past one year. The input variables consist 
of the turbidity of raw water, temperature, pH, alkalinity, and 
so on. The output variable to be predicted in terms of the 
preceding input attributes is PAC (Poli-Aluminum Chloride) 
widely used as a coagulant. In order to evaluate the resultant 
model, we divide the data sets into training and checking data 
sets. Here, we choose 173 training sets for model construction, 
while the other test sets are used for model validation. 
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 Fig. 12 Approximation ability of the TSK-LFM (training data) 

Fig. 14 RMSE obtained by RBFNN 

 

 

 
Fig. 13 Generalization ability of the TSK-LFM (test data) 

 Fig. 15 Generalization ability of the TSK-LFM (test data) 
  

Table 2 summarizes the RMSE in comparison with other 
models. In the design of conventional LM, we encountered a 
data scarcity problem due to small data included in side 
linguistic context. Thus, we obtained the best model when p=5 
and c=5. As listed in Table 2, we can recognize from the 
results that the TSK-LFM showed a better performance in 
comparison with the previous works. Fig. 14 shows the RMSE 
obtained by RBFNN for training and test data. Fig. 15 
visualizes the actual output and the uncertain model output 
represented by lower and upper bound for test data.  

 
4. CONCLUSIONS 

      
We have developed the comprehensive design framework of 
linguistic model introduced by Pedrycz. Thus we have 
proposed the TSK-LFM with uncertain model output 
represented by fuzzy number. The results obtained by 
TSK-LFM showed a better performance than other models for 
coagulant dosing process in water purification plant and 
automobile MPG data. The TSK-based linguistic type used in 
this study provided the meaningful linguistic representation of 
Mamdani fuzzy model as well as intensive computation ability 
of Sugeno fuzzy model. Furthermore, we confirmed the 
effectiveness through the bias term and flexible linguistic 
contexts. 

 
Table 2 Comparison of RMSE (*: no. of hidden nodes) 

 [p, c] RMSE 
(training)  

RMSE 
(test) 

Linear regression . 3.508 3.578 

RBFNN 48* 3.522 3.628 

LM [4] [5,5] 3.725 3.788 

Type1 [5,9] 2.965 3.123 
 

Type2 [5,9] 2.514 2.661 
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