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Abstract

Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of

fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this

study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome

this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential

evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuz-

zy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identi-

fication is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least

square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The pro-

posed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Key Words : Improved Differential Evolution (IDE), Fuzzy Inference System (FIS), Information Granulation (IG),

C-Means clustering, Least Square Method (LSM)

1. Introduction

A great deal of development of fuzzy modeling has

been reported over the past decades. In these pub-

lications, pioneering works such as Tong et al. [1] are

well-known due to different approaches for fuzzy

modeling. In these studies, an important problem of de-

signing a fuzzy model is how to identify “good” initial

parameters of the fuzzy rules. To address this problem,

Oh et.al [2] have presented that using genetic algorithm

and a concept of Information granulation (IG) to devel-

op fuzzy inference systems. Liu et.al [3], Chung and

Kim [4] and others have discussed the design of fuzzy

models by means of optimization algorithms,

respectively. Some enhancements have been obtained,

yet there is a lack of investigations on the solution

space being explored and studies on ways in which the

computational effectiveness could be enhanced.

As one of successful optimization vehicle, genetic al-

gorithm (GA) is widely applied to optimize fuzzy in-

ference system. GA is a global search technique with

the ability to explore a large space for suitable solutions

only requiring a performance measure. In addition to

their ability to find near optimal solutions in complex

search spaces, the genetic code structure and in-

dependent performance features of GA make it suitable

candidates to incorporate a priori knowledge [5]. In

spite of these advantages, GA is also has its limitations.

For example, the convergence speed is sometimes com-

putationally expensive due to its evolutionary process.

Differential Evolution (DE) initialized by Price and

Storn in 1995 [6] is an effective global optimization al-

gorithm which has fast convergence speed.

Nevertheless, an apparent limitation is that DE tends to

suffer from premature convergence when solving com-

plex problems.

Recently, an improved differential evolution (IDE) has

been proposed [7]. The IDE has been proven that it can

search the solution space more efficiently and it is well

suited for parallel implementation. Here we employ the

IDE as an optimization vehicle to optimize the fuzzy

models. A design of fuzzy inference systems based on

the IDE is developed. The evaluation of the performance

of the proposed model is carried out by using two
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/* Pseudo of IDE*/
BEGIN
Initialization with the aid of orthogonal;
While the terminal condition is satisfied

Selection;
Mutation;
Orthogonal crossover;
Evaluation;

End While
Report the result;

End

/* Algorithm 1. orthogonal initialization*/
BEGIN
Eval=0;
For i=1 to R do
For j=1 to N do
Generate orthogonal array.
Evaluation;

End For /*i*/
End For /*j*/

End

well-known data sets. To demonstrate the performance

of IDE, the proposed model is also compared with some

existing fuzzy models that have already reported in

some publications.

The paper is organized as follows. In Section 2, we

first review the main different DE and then introduce

the framework of IDE in detail. Section 3 gives the de-

sign of fuzzy models. Section 4 reports a series of com-

parative studies by using different well-known datasets.

Finally, the conclusion is covered in Section 5.

2. Improved Differential Evolution (IDE)

Difference evolution (DE) has been successfully ap-

plied to solve lots of different real-world optimization

problems. As one of evolutionary algorithms, there also

three basic operators in DE, they are Mutation,

Crossover, and Selection. However, DE has been shown

to have certain weaknesses, especially if the global op-

timum should be located using a limited number of

function evaluations [7]. To overcome this drawback,

orthogonal approach is included to improve the initiali-

zation as well as crossover. The IDE is designed with

the aid of an orthogonal design method, which can ac-

celerate its convergence rate. In the IDE, the orthogonal

design method is not only to be used to generate the

initial population, but also to be applied to design the

crossover operator. Table 1 summarizes the pseudo

code of IDE.

Table 1. Pseudo of IDE

1) Initialization. The initialization population should

be better cover the entire solution space as much as

possible by uniformly randomizing individuals.

Generally, if the solution space is large, a big population

size is needed for DE. It is apparent that it is desirable

to sample a small, but representative population of in-

dividuals for experimentation, and based on the sample,

the optimal may be estimated. The orthogonal design

was developed for the purpose [8]. The main steps of

orthogonal population are as follows:

Step 1. Design an orthogonal array.

Step 2. Quantize the solution space.

Step 3. Generate the population.

In a discrete single-objective optimization problem,

when there are N factors (variables) and each factor

has Q levels, the search space consists of QN combina-

tions of levels. When N and Q are large, it may not be

possible to do all QN experiments to obtain optimal

solutions. For convenience, we use L(Qc)todenotetheor-

thogonal array with different level Q, where Q is odd. R

that is equal to Qj is used to indicate the number of

orthogonal array, where j is a positive integer fulfilling

 

 
(1)

Here C denotes the number of the columns of or-

thogonal array in the above equation. More specifically,

the algorithm of orthogonal initialization is listed as

shown in Table 2.

Table 2. Pseudo of orthogonal initialization

2) Mutation. After initialization, DE employs the mu-

tation operation to produce a mutant vector with respect

to each individual, so-called target vector, in the cur-

rent population. There are several mutation strategies

implemented in the DE codes [9]. The five most fre-

quently used mutations operations are listed as follows:

1)“DE/rand/1”

 · (2)

2)“DE/best/1”

 · (3)

3)“DE/best/2”

 ·· (4)

4)“DE/best/1”

 ·· (5)

Where,      are individuals randomly se-

lected from the population,  is the individual with

the best fitness in the current population,  is the scal-
ing factor that is a positive control parameter for scal-
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/* Algorithm 2. orthogonal initialization*/
BEGIN
Set two parameters Q1andC1;
Select the smallest J1 fulfilling (QJ1-1)/(Q1-1)=C1
Randomly select two solutions from the population
Quantize the domain formed by the two solutions
Generate R1potentialoffspringbasedonQuantization
Select the best solution B from R1offspring
Output the best solution B

End

ing the difference vector.

3) Crossover. Generally, the binomial (uniform)

crossover of DE can be briefly stated as follows:

    ≤ 

 
(6)

Where, CR denotes the crossover rate that is a

user-specified constant within the range [0,1), which

controls the fraction of parameter values copied from

the mutant vector [9]. Based on this crossover oper-

ation, the orthogonal crossover operation can be devel-

oped as shown in Table 3 [7].

Table 3. Pseudo of orthogonal crossover

4) Selection. The selection operation of IDE is the

same as the conventional DE. If the values of some pa-

rameters of a newly generated trial vector exceed the

corresponding upper and lower bounds, we randomly

and uniformly reinitialize them within the prespecified

range. Then the objective function operation is per-

formed and a selection operation is performed. The se-

lection of DE can be briefly stated as follows [9] :

      ≤ 

 
(7)

3. Design of the IG-based fuzzy models

With respect to the design of fuzzy models, we real-

ized the structure identification as well as parameter

identification. The structure identification is supported

by the IDE and C-means while the parameter estima-

tion is realized via the IDE and weighted least square

error method. The identification of the conclusion parts

of the rules deals with a selection of their structure

(type 1, type 2, type 3 and type 4) that is followed by

the determination of the respective parameters of the

local functions occurring there. The conclusion part of

the rule that is extended form of a typical fuzzy rule in

the TSK (Takagi-Sugeno-Kang) fuzzy model has the

form.

  and⋯ and    ⋯   (8)

Type 1 (Simplified Inference):

  (9)

Type 2 (Linear Inference):

 ⋯ (10)

Type 3 (Quadratic Inference):

 ⋯


⋯



⋯


(11)

Type 4 (Modified Quadratic Inference):

 ⋯

⋯


(12)

The optimal coefficients of the model is estimated

through the minimization of the objective function 

 
  








 
 (13)

Where  is the normalized firing strength

(activation level) of the ith rule.

The performance index  can be rearranged as

 
  



 
 


  










 

(14)

Where  is the vector of coefficients of ith con-

sequent polynomial (local model),  is the vector of

output data,  is the diagonal matrix (weighting fac-

tor matrix) which represents degree of activation of the

individual information granules by the input data.  is

a matrix which is formed with input data and in-

formation granules (centers of cluster). In case the con-

sequent polynomial is Type 2 (linear or a first-order

polynomial),  and  read as follows

 











  ⋯ 

 ⋯ 
⋮ ⋮ ⋱ ⋮
  ⋯

(15)
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 











  ⋯ 

  ⋯ 

 ⋮ ⋱ ⋮
  ⋯ 

(16)

    ⋯ (17)

For the local learning algorithm, the objective func-

tion is defined as a linear combination of the squared

error, which is a difference between output data and the

result produced each fuzzy rule when considering the

weighting factor matrix  . This matrix captures the

activation levels of input data with respect to ith

sub-space. In this sense we can consider the weighting

factor matrix as a discrete version of the fuzzy

(linguistic) representation for the corresponding

sub-space. The optimal coefficients of the consequent

polynomial of the ith fuzzy rule can be determined in a

usual manner that is

  


 (18)

Notice that the coefficients of the consequent poly-

nomial of each fuzzy rule have been computed in-

dependently using a subset of training data. These

computations can be implemented in parallel and in this

case the overall computing load becomes unaffected by

the total number of the rules.

The proposed IDE is exploited here to optimize the

fuzzy models. Here we simultaneously realize the struc-

ture identification as well as parameter estimation of

the model [10-11]. A stochastic variable (a variant

identification ratio) used within modified simple differ-

ential evolution operators (crossover and mutation) in

the IDE is used support an efficient successive tuning

method. During the initial generations of the IDE, the

differential evolution operators are assigned with higher

probability to the solution region for structural

optimization. This probability becomes lower when

dealing with a region of the solution involving the pa-

rameter estimation. In this manner, the optimization be-

comes mostly focused on the structure identification.

Over the course of the optimization (for higher gen-

erations), the optimization of the fuzzy model becomes

predominantly focused on the parameter estimation.

The differential evolution operators in the IDE for the

successive tuning method being realized with the aid of

a variant identification ratio are implemented. Their es-

sential parameters such as gen, maxgen, and l are

given. Here, gen is an index of the current generation,

maxgen stands for the maximal number of generations

being used in the algorithm, and l serves as some ad-

justment coefficient whose values can determine a var-

iant identification ratio (p) for both structure identi-

fication and parameter estimation. The detailed space

search operator in the IDE algorithm is presented as

follows:

While { the termination conditions are not met }

Generate random variable (r1).

Calculate a variant identification ratio (p) which is a

generation-based stochastic variable of the form

 

≥max≥
(19)

IF {p > 0.5}

Differential evolution within the first part of solutions

for structural optimization.

Else

Differential evolution within the second part of sol-

utions for parametric optimization.

End IF

End while

case the overall computing load becomes unaffected

by the total number of the rules.

The objective function (performance index) is re-

garded as a basic mechanism guiding the evolutionary

search carried out in the solution space of potential

solutions. The objective function involves both the

training and testing data and comes as a convex com-

bination of these two components

 ×× (20)

Here, PI and V_PI denote the performance index for

the training data and validation data, respectively.  is

a weighting factor that allows us to form a sound bal-

ance between the performance of the model for the

training and testing data. Depending upon the values of

the weighting factor, several specific cases of the ob-

jective function are worth distinguishing.

(i) If    then the model is optimized based on the

training data. No testing data is taken into

consideration.

(ii) If    then both the training and testing data

are taken into account. Moreover it is assumed that

they exhibit the same impact on the performance of the

model.

(iii) The case   where ∈  embraces both

the cases stated above. The choice of  establishes a

certain tradeoff between the approximation and general-

ization aspects of the fuzzy model.

We use performance index of the standard root mean

squared error (RMSE) and mean squared error (MSE)

or 














 
  




 RMSE

m
 i 

m
yi yi MSE

(21)
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Where, E_PI represents as the performance index of

testing data.

4. Experimental studies

This section reports on comprehensive numeric stud-

ies illustrating the design of the fuzzy model. We use

two well-known data sets. Each data set is divided into

two parts of the same size. PI, V_PI, and E_PI denote

the performance index, respectively. Where, PI is for

the training data, V_PI represents the validation data,

and E_PI stands for the testing data. In all consid-

erations, the weighting factor  was set to 0.5.

4.1 Automobile MPG Data

The first dataset is an automobile MPG data

(f tp:/ / ics .uc i .edu/pub/machine-learning-data-

based/auto-mpg) with the output being the automobile’s

fuel consumption expressed in miles per gallon. This

data set includes 392 input-output pairs (after removing

incomplete instances) where the input space involves 8

input variables. To come up with a quantitative evalua-

tion of the fuzzy model, we use the standard RMSE

performance index. The automobile MPG data is parti-

tioned into two separate parts. The first 196 data pairs

are used as the training data set for FIS, the second

118 pairs are utilized for validation data set, while the

remaining 78 pairs are the testing data set for assess-

ing the predictive performance. The identification error

of the proposed model is compared with the perform-

ance of some other model; refer to Table 4. It is clear

that IDE-based fuzzy model leads to better performance

in comparison with some other models.

Table 4. Comparative analysis of selected models(MPG)

Model PI V_PI E_PI
No.of

rules

RBFNN [12] 3.24 3.62 36

Linguistic model

[13]
2.86 3.24 36

Functional

RBFNN[12]
2.41 2.82 33

Our model 2.05 2.69 2.54 32

4.2 Medical Image System Data (MIS)
The second data we consider a medical imaging sys-

tem data set involves 390 software modules written in

Pascal and FORTRAN. Each module is described by 11

input variables, that is, total lines of code including

comments (LOC), total code lines (CL), total character

count (TChar), total comments (TComm), number of

comment characters (MChar), number of code charac-

ters (DChar), Halstead’s program length (N), Halstead’s

estimated program length (N), Jensen’s estimator of

program length (NF), McCabe’s cyclomatic complexity

(V(G)), and Belady’s bandwidth metric (BW). The out-

put variable of the model is the number of reported

changes—change reports (CRs). The given dataset is

partitioned to producet hree data sets. The first 50% of

dataset is used for training the models, the second 30%

of dataset is utilized fo rvalidation, while the remaining

20% of dataset provides for the testing dataset. RMSE

is considered as the performance index.

For the MIS dataset, the optimal performance of the

proposed fuzzy model is summarized in Table 5. As

shown in the results, the performances of the proposed

fuzzy model are better in the sense of its approximation

and prediction abilities. That is to say, the proposed

fuzzy model leads to stable good performance when

considering a sound balance between the approximation

and generalization.

Table 5. Comparative analysis of selected models (MIS)

Model PI VPI EPI Index

SONFN[14] 35.745 17.807 MSE

FPNN[15] 32.195 18.462 MSE

FSONN[16] 23.739 9.090 MSE

Incremental

model[17]
5.877 6.570 RMSE

Our Model 0.671 1.186 1.912 RMSE

5. Conclusion

This paper introduced an approach to develop the

fuzzy models by means of an IDE. Experimental results

show that IDE-based model obtains better performance

in comparison with some other fuzzy models reported in

the literature.
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