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ABSTRACT 

Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy 
logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks 
with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, 
there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy num-
ber to a real number via integrating the inverse of the membership function, new autoregressive models can be devel-
oped to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and 
parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be mod-
eled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic 
equations. 
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1.  INTRODUCTION 

A fuzzy time series is a sequence of observations 
each of which is a fuzzy set or a fuzzy number (Song and 
Chissom, 1993a). The concept of fuzzy time series was 
proposed to model dynamic processes with fuzzy obser-
vations that are hard if not impossible to be modeled by 
the conventional time series. For instance, it is perhaps 
more appropriate to model human being’s feelings or 
moods using fuzzy sets than using a random variable 
because feelings or moods are of a subjective matter. As 
a result, if one records one’s own overall mood on a 
daily basis, one will have a sequence of fuzzy sets ob-
served over time. Such a sequence of fuzzy sets de-
scribes, if one admits, the overall feelings a person may 
experience each day, and forms a fuzzy time series. 
Abundant examples of fuzzy time series can be found. 

Since the publication of the first paper on fuzzy 
time series, fuzzy time series as a framework of model-
ing technique have found numerous applications in fore-

cast, experienced various enhancements both in model-
ing methods and applications (Chen, 1996, 2002; Chen 
and Chung, 2006; Chen, and Hwang, 2000; Chen and 
Hsu, 2004, 2008; Hwang et al., 1998; Huarng, 2001a, 
2001b; Huarng and Yu, 2004, 2006; Lee and Chou, 2004; 
Lee et al., 2006; Own and Yu, 2005; Sah and Degtiarev, 
2005; Song and Chissom, 1993b, 1994), and have also 
encountered, in my opinion, at least three major difficul-
ties or obstacles in the course of their development.  

The first difficulty is to select a proper model for a 
given fuzzy time series. In applications of fuzzy time 
series, the practice has been to choose a model accord-
ing to experience or for convenience, say, choose a first 
order model, and then determine the parameters or details 
of the model using historical data. The selected model is 
then used in forecasting. To find the best model, differ-
ent candidate models with different parameters have to 
be created and used in this fashion, and the modeling or 
forecast errors are used as the criterion for choosing the 
best model. This heuristically sound approach, although 
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practical and applicable, has a number of drawbacks. The 
most striking one is the lack of a systematic way to build 
a fuzzy time series model, the process called model iden-
tification. For this reason, modeling fuzzy time series 
has been mainly a trial and error process. However, re-
cently a method has been proposed to identify the order 
of the fuzzy time series before constructing the model 
(Song, 2003). The main idea is to estimate the sample 
autocorrelation functions of the fuzzy observations and 
then use the estimated autocorrelation functions as guid-
ance in selecting a proper model. This method, albeit still 
in its rudimental stage, provides a systematic approach 
to model selections for fuzzy time series, and also pro-
vides a potential tool for model analysis.  

The second difficulty in fuzzy time series applica-
tions is the construction of high order models. It is quite 
evident that very often high order models are better suit-
able to a given fuzzy time series than a first-order model. 
Although high order models were proposed in terms of 
fuzzy relations (Song and Chissom, 1993a), there are a 
certain number of issues and difficulties in implementa-
tion of such models. It seems to me that the fuzzy rela-
tions might not be good candidates for high order models 
of fuzzy time series if the operations are solely ‘max-min’ 
composition operator. Unless different and more efficient 
forms can be found to express fuzzy relations of high 
orders, fuzzy relations may not be the right choice for 
fuzzy time series of high orders. In the literature, a rule-
based model has been proposed to implement high-order 
models, and the results are very impressive (Chen, 2002; 
Chen and Chung, 2006; Chen and Hsu; 2006; Tsai and 
Wu, 1999). In the rule-based models, instead of the max-
min composition operator being used, temporal informa-
tion hidden in the fuzzy time series is identified in the 
form of rules to describe the relationship among differ-
ent fuzzy observations, and thus the model determines 
the output according the rules identified in such a way 
using historical data. Such rules can be created to desc-
ribe the temporal relationships among any numbers of 
fuzzy observations in the past. As long as a resolution 
protocol is provided for any potentially conflicting rules, 
such models can be used well for high-order fuzzy time 
series. However, such models are not friendly to analy-
sis and the order of the model, i.e., the number of inputs 
of the rules, must be determined in advance either by 
experience or by heuristics, and hence more efforts are 
still needed to enhance this type of models.  

And the third difficulty in fuzzy time series appli-
cation is the lack of a powerful tool to analyze the prop-
erties of a model and in turn analyze the properties of 
the fuzzy time series. Such a tool is in an urgent need as 
it may provide insights into the fuzzy time series by ana-
lyzing the model itself. Without such a tool, fuzzy time 
series as a research field will have very limited poten-
tials and future. To the best of my knowledge, no pro-
gress in this direction has been reported so far in the 
literature. We can anticipate that these three aspects are 
complementary to one another, and the solution of one 

may affect the others. 
The motivation of this paper is to propose a new 

modeling framework for fuzzy time series. Specifically, 
we address the issue of modeling fuzzy time series of 
fuzzy numbers. Collectively, we model the observation 
values of a fuzzy time series by means of α-level points 
at different times, and the forms of the models take ex-
actly those of autoregressive, moving average, or auto-
regressive and moving average. It is believed that such 
models will describe collectively the behavior of a fuzzy 
time series, and by analyzing the models, properties of 
the fuzzy time series can be determined. Also, it is ex-
pected that such models have the advantages of easy 
implementation, even with high-order models, and being 
easy to analyze. The remainder of this paper is organ-
ized as follows. In Section 2, we briefly review the defi-
nitions of fuzzy time series, the models, and then the 
sample autocorrelation functions of fuzzy time series, 
and how to use sample autocorrelation functions to assist 
model selection. After that, we propose the new model-
ing framework for fuzzy time series in Section 3, which 
hopefully provides one tentative solution to the first two 
problems encountered in fuzzy time series modeling and 
applications, namely, the model order identification and 
higher order modeling problems; we will show that fuzzy 
time series with trends and seasonalities can be modeled 
easily under the new framework, and multivariate mod-
els are possible as well; characteristic equations of fuzzy 
time series are defined and relationships between prop-
erties of the roots and stability will be given. Conclu-
sions and discussions are found in Section 4. 

2.  LITERATURE REVIEW 

2.1 Fuzzy Time Series  

First, we review the definition of fuzzy time series 
and its models.  

Let Y(t) (t = …, 0, 1, 2, …), a subset of 
1R , be the 

universe of discourse on which fuzzy sets ( )if t  are de-
fined where 1, 2, 3, ,i =  and F(t) is a collection of ( )if t  

where 1, 2, 3,i =  Then, F(t) is called a fuzzy time 
series on Y(t) (Song and Chissom, 1993). This definition 
allows a distribution of fuzzy sets to be defined at a 
given time instant. A special case is where the fuzzy 
time series has a degenerate distribution at each time 
instant so that only one fuzzy set is defined. The latter 
case is more often seen in practice. In some literatures, 
fuzzy time series is given in the sense of the latter. 

A model of a fuzzy time series describes how the 
observations in the past are related to the current or the 
future ones. The main approach has been using fuzzy 
relations as the model of fuzzy time series, either in an 
equation or in a rule based form. When in a fuzzy rela-
tional equation form, a model of the first order can be 
expressed as follows, 
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( ) ( 1) ( , 1)F t F t R t t= − −    (1) 
 

where ‘○’ is the ‘max-min’ operator, ( , 1)R t t −  is called 
a fuzzy relation between ( 1)F t −  and ( ),F t  and is calcu-
lated using the following formula, 

( ),( , 1) ( 1) ( )i j i jR t t f t f t− = − ×∪   (2) 

where ‘×’ is the Cartesian product, ‘∪ ’ is the union 
operator, ( 1)if t −  and ( )jf t  are two fuzzy observations 
at t–1 and t, respectively. Higher order models of fuzzy 
relations can be given below, 

( )( ) ( 1) ( 2) ( ) ( , )F t F t F t F t m R t t m= − × − ×⋅ ⋅ ⋅× − −  (3) 

which reflects the relationship between the observations 
in the following rule-based form 

( )( 1) ( 2) ( ) ( )F t F t F t m F t− ∩ − ∩ ∩ − →    (4) 

or  
 
( )( ) ( 1) ( 2) ( ) ( , )F t F t F t F t m R t t m= − ∪ − ∪ ∪ − −  (5) 

 
which can be expressed equivalently in the following 
rule-based form 
 

( )( 1) ( 2) ( ) ( )F t F t F t m F t− ∪ − ∪ ∪ − →     (6) 
 
All of the above three models can be written using 

the IF-THEN form, and it is this form that is used in 
many publications as the high-order models of fuzzy time 
series in applications (Chen, 2002). Depending upon 
how the membership functions of the outputs are calcu-
lated from the membership functions of the inputs in 
each of the above models, different models may be ob-
tained.  

An obvious question can be asked before applying 
these models; how do we determine, in a systematic fash-
ion, the value of m in the above models, i.e., how do we 
determine the order of the models systematically? This 
question falls in the realm of model identification, and 
applies equally to both the fuzzy relational equation 
models and the rule-based models. The fuzzy relation 
model ( , 1)R t t −  is a 2-dimensional matrix for a first-
order fuzzy time series, and ( , )R t t m−  is an (m+1)-
dimensional matrix for an m-order fuzzy time series. 
This not only requires a large amount of memory in cal-
culations but also creates difficulty in illustrations. 
Therefore, it is necessary to look for different schemes 
to model the relationships among observations of a 
fuzzy time series. 

2.2 Sample Autocorrelation Functions of Fuzzy 
Time Series 

To address the issue of model identification for 

fuzzy time series, sample autocorrelation functions of 
fuzzy time series are proposed in Song (2003). Fuzzy 
sets are defined on intervals of 

1.R  To investigate the 
correlation between fuzzy sets, we can study the correla-
tion between the intervals upon which the corresponding 
fuzzy sets are defined. Therefore, the main idea is to 
treat each fuzzy observation as an interval value, and the 
estimated correlation between the intervals may provide 
information about how the intervals are correlated to 
each other. Correlation between intervals can be defined 
as a collective correlation between all different points in 
each interval, or can be defined as correlation between 
some specific points in each interval. Evidently, as the 
cordiality of such data points approaches infinity, corre-
lation measures given by such points could be the true 
indication of correlation between intervals. But, this is 
impractical computationally. Hence, it is more realistic 
to consider correlation between a finite number of dif-
ferent points with certain properties in each interval. For 
this reason, three different approximate measures are 
considered in Song (2003), which we will briefly intro-
duce below. 

 
2.2.1 Using defuzzified values to calculate autocorre-

lation functions 
The simplest case is to calculate the correlation be-

tween the defuzzified values of each fuzzy set. Suppose 
we have a set of observed fuzzy sets 1 2, , , nf f f  which 
are from a fuzzy time series. First, let us calculate the 
defuzzified value for each fuzzy set as DF(fk) where 
k = 1 to n and DF( ) is a properly defined defuzzification 
operator. Then, we calculate the mean value of the de-
fuzzified values as follows 

 

1

1 ( )
n

i
i

x DF f
n =

= ∑   (7) 

 
The sample auto-covariance function can be esti-

mated as follows, 
 

( )( )
| |

| |
1

1ˆ ( ) ( ) ( )
n h

t h t
t

h DF f x DF f x
n

γ
−

+
=

= − −∑  (8) 

 
where h is the lag satisfying ,n h n− < <  and the sample 
autocorrelation function is estimated as follows, 
 

ˆ( )ˆ ( )
ˆ(0)

hh γρ
γ

=    (9) 

 
where .n h n− < <  The drawback of this approach is that 
the autocorrelation coefficient does not reflect the widths 
of each interval. 

 
2.2.2 α-Contour average autocorrelation functions 

For an α value satisfying 0 1,α< ≤  we are able to 
find a real number on the universe of discourse of the 
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fuzzy set so that ( ) .xμ α=  Denote such a real number as 
.xα  In the case that multiple values xα  can be found, 

pick an arbitrary one. Now, suppose 1 2, , , ,nf f f  
are the fuzzy sets each of which is an observation of a 
fuzzy time series at a time instant. Let ixα  be a real 
number from the universe of discourse of if  such that 

( ) ,
if ixαμ α=  and suppose 

1

1 .
=

= ∑
n

i
i

x x
n

α α
 Then, the auto-

correlation function at the level α can be calculated with 
(9) and the auto-covariance function can be estimated as 
follows, 

( )( )
| |

| |
1

1ˆ ( )
n h

t h t
t

h x x x x
n

α α α α αγ
−

+
=

= − −∑   (10) 

Suppose different α values are chosen and the cor-
responding autocorrelation functions are calculated. Then, 
the average of the autocorrelation function values at the 
same lag is called α-contour average autocorrelation 
function. It can be seen that the width of the universe of 
discourse can be reflected if there are enough different α 
values considered in (10). 

 
2.2.3 Randomized average autocorrelation functions 

We may randomly pick a data point from each in-
terval and thus form a time series. Then, we calculate 
the autocorrelation function of such a time series. If we 
repeat this process for N times, and calculate the average 
of the autocorrelation function values at each lag, then 
we will obtain a randomized-average autocorrelation 
function. Such an average autocorrelation function can 
reflect the widths of each interval as the data points are 
selected from the entire interval. 

Once the autocorrelation information of a fuzzy 
time series is obtained from any of the aforementioned 
three measures, a plot of the autocorrelation function 
can be created and characteristics of the plot will reveal 
rich information about the order and type of the model. 
This will be addressed in Section 3.2.1.B. 

3.  MAIN RESULTS 

In this section, we present a new class of fuzzy time 
series models, address how to identify the model and 
estimate the model parameters, discuss how to forecast 
using the new models, consider the asymptotic behavior 
of fuzzy time series, explore multivariate models, and 
exhibit how to model trends and seasonality using the 
new models. 

3.1 New Models of Fuzzy Time Series 

We propose three different models in this section. 
These are the autoregressive, moving average, and auto-
regressive-moving average models. These models take 
the same formulation as those in conventional time se-

ries. But, the assumptions on these models are quite 
different. 

 
3.1.1 Autoregressive models 

The idea of calculating autocorrelation functions of 
sampled data points on the universe of discourses of a 
fuzzy time series in Section 2 can be extended. When 
calculating sample autocorrelation functions of a fuzzy 
time series, only two data points at two time instants are 
considered. If multiple time instants are involved, we 
may be able to develop a new model. To proceed, let’s 
assume that the observations of the fuzzy time series are 
fuzzy number with a unique mode. Without loss of gen-
erality, suppose a fuzzy time series is given as { }tF  
and the universe of discourse is { }tX  each of which is 
an interval in 

1R  for , 1, 2, 3, .t =  Let ( ),
tf xμ  a un-

imodal and continuous function, be the membership 
function of the fuzzy number ,tf  and let α be a real 
number so that 0 1.α< ≤  Let t tx Xα ∈  be a real number 
such that ( ) .

tf txαμ α=  Now, consider the time series 
formed by { }.txα  Suppose this time series is stationary 
and can be modeled with an AR(p) model (Box et al., 
1994). Then, we have the following difference equation, 

 
1 1 2 2t t t p t p tx a x a x a xα α α α αε− − −= + + + +  (11) 

 
where { }t

αε  is a modeling error process with certain pro-
perties. For a given α value, there are two different real 
numbers txα  satisfying the condition that ( )f tt xαμ α=  
and this creates ambiguity. To eliminate this ambiguity 
when solving for txα  from the equation ( ) ,f tt xαμ α=  
let’s decompose any fuzzy number tf  into two parts: a 
left part and a right part, denoted respectively as 

L
tf  

and .R
tf  Accordingly, the membership function can be 

denoted as ( )L
t xμ  and ( ),R

t xμ  respectively. The left part 
has the property that the membership function is in-
creasing and the maximum value is 1, and the right part 
has the property that it is decreasing and has a maximum 
value of 1. With such decomposition, the membership 
functions ( )L

f tt xμ  and ( )R
f tt xμ  have inverse functions which 

we denote as ( )L
tx α  and ( ),R

tx α  respectively. Figure 1 
below demonstrates an example of ( )L

f tt xμ  and ( )R
f tt xμ  

for a given α  level, 
 

 
Figure 1. Illustration of a fuzzy membership function 

decomposed into two parts. 

 
where the membership function is piecewise linear al-
though the membership functions could be piecewise 
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nonlinear. For simplicity, we will ignore the superscript 
L and R in these notations by assuming that in the model 
all membership functions or their inverse are of the 
same part, and all the models should be understood ac-
cordingly. For simplicity, denote ( ) .t tx xαα =  In addition, 
it is assumed that ( )tx α  is integrable with respect to α 
for all t. Then, (11) can be rewritten as 
 

1 1 2 2( ) ( ) ( ) ( ) ( )t t t p t p tx a x a x a xα α α α ε α− − −= + + + +  (12) 
 

where 

1
( ) ( ) ( ).

p

t t i t i
i

x a xε α α α−
=

= −∑  Let tE  be a fuzzy set 

whose membership function is given by ( ( )) .E ttμ ε α α=  
Then, tE  can be taken as the modeling error. It can be 
seen that model (12) describes the relationship among 

( ),tx α  a real number that has a membership function 
value α at t, and 1 2( ), ( ) , , ( )t t t px x xα α α− − −  all real num-
bers with the same membership function values at t-1, 
t-2, …, t-p. Thus, we have derived a time series of real 
numbers from a fuzzy time series. All the data in the 
derived time series have the same fuzzy membership 
value α. As { }( )tx α  is an ordinary time series, we can 
identify and build an AR model for it. Such a model can 
be seen as a partial model of the fuzzy time series be-
cause this model only deals with a subset of points in the 
universe of discourse at different t. We hope to develop 
a model which can describe the fuzzy time series collec-
tively. This model should contain ( )tx α  for all different 
α values, and different α values should have different 
contributions in the model. To this end, let’s multiply α 
to both sides of (12) to get a weighted version of the 
model, and integrate both sides with respect to α over [0, 
1]. Suppose such an integral exists. Then, we have the 
following equation, 
 

1 1

1 1
0 0

( ) ( )t tx d a x dα α α α α α−= +∫ ∫  

1 1

0 0

( ) ( )p t p ta x d dα α α ε α α α−+ +∫ ∫  (13) 

 
It can be seen that ( )tε α  is also a function of α 

from (12). Therefore, Eq. (13) is well defined. As each 
ia (i = 1, 2, …, p) is simply a constant, (13) can be writ-

ten equivalently as  
 

1 1 2 2 ( )t t t p t p tx a x a x a x ε α− − −= + + + +  (14) 
 

where 

1

0

( )t tx x dα α α= ∫  for each t, and 

1

0

( ) ,t t dε ε α α α= ∫  

which are transformations from fuzzy numbers to real 
numbers. tx  can be seen as a type of representative of a 
fuzzy set or fuzzy number in 

1.R  Thus, (14) models the 
fuzzy time series in the sense that it models the behavior 
of the transformed fuzzy time series via integration of 
the weighted inverse of the membership functions. As 
each tx  is a real number, { }tx  forms an ordinary time 

series, and thus a proper model can be identified and 
built for it. However it must be pointed out that such a 
model is for the entire universe of discourse of the ob-
servations of a fuzzy time series. Therefore, it is a type 
of models of fuzzy time series. In applications, fuzzy 
sets are sometimes defined on a discrete subset of 

1.R  
To calculate { },tx  we may select a finite number of val-
ues for α, and calculate the weighted sum of ( )tx α  for 
different t where α is the weight, as follows, 
 

1
( )

K

t i t i
i

x xα α
=

= ∑   (15) 

 
It can be seen that in the formula tx  with large α 

values will have large influence on the value of tx  and 
will in turn have large influence on the determination of 
the model parameters ia  in (12). The above models are 
evidently the autoregressive type or AR for short. 

 
3.1.2 Moving average models 

Now, let us consider the moving average models 
for a fuzzy time series. The key is to construct a model-
ing error fuzzy time series and use this time series in the 
model. Suppose { }tE  is a fuzzy time series, and that { }tF  

can be expressed by { }tE  in the following manner pro-
vided that ib  are known for 1, 2, , ,i q=  

 
1 1 2 2( ) ( ) ( ) ( ) ( )t t t t q t qx e b e b e b eα α α α α− − −= + + + +  (16) 

 
To construct the time series { },tE  let us define ( )te α  

0=  for t = 1, 2, …, q-1, ( ) ( )q qe xα α= , and  
 

1
( ) ( ) ( ), ,

q

t t j t j
j

e x b e t qα α α α−
=

= − ∀ ∀ >∑  (17) 

 
Thus, ( )te α  is uniquely determined for each α and 

the membership function of fuzzy set tE  is given by 
( ( )) .E tt eμ α α=  Hence, { }tE  is a well-defined fuzzy time 

series. Next, let us multiply α to both sides of (16), and 
integrate both sides with respect to α from 0 to 1. Sup-
pose all the integrals exist. Then, we have the following 
equation, 

 
1 1 1

1 1
0 0 0

( ) ( ) ( )t t tx d e d b e dα α α α α α α α α−= +∫ ∫ ∫  

1 1

2 2
0 0

( ) ( )t q t qb e d b e dα α α α α α− −+ + +∫ ∫  (18) 

 

Denote 

1

0

( ) .t te e d tα α α= ∀∫  Then, (18) can be written as 

 
1 1 2 2t t t t q t qx e b e b e b e− − −= + + + +   (19) 

 
As { }tx  and { }te  are both ordinary time series, (19) 
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can be regarded as a moving average model of fuzzy 
time series { }.tF  Note that the moving average model of 
fuzzy time series is different from that of the conven-
tional time series in that the errors are fuzzy sets in 
fuzzy time series moving average models. The error 
fuzzy time series are defined recursively via (17). Note 
also that the coefficients in (17) are different from those 
in (18) and (19). 

 
3.1.3 Autoregressive-moving average models 

Finally, we consider the autoregressive-moving av-
erage (ARMA) models of a fuzzy time series. The key is 
again to construct a fuzzy time series of the modeling 
error and use it in the model, which can be the corner 
stone of the ARMA fuzzy time series models.  

For a fuzzy time series { },tF  we can construct an-
other fuzzy time series { }tE  whose universe of discourse 
is determined by the following equation provided that 

ia  and jb  are known , ,i j∀  
 

1 1
( ) ( ) ( ) ( )

p q

t t i t i j t j
i j

x a x bε α α α ε α− −
= =

= − −∑ ∑  (20) 

 
for t = q+1, …, ( ) 0tε α =  for t = 1, 2, …, q-1, and 

( ) ( ).q qxε α α=  Thus, { }tE  is a well-defined fuzzy time 
series and each of the observation is a fuzzy set of the 
modeling error. Suppose { }tF  can be modeled by { }tE  
in the following manner, 
 

1 1
( ) ( ) ( ) ( )

p q

t j t j t j t j
i j

x a x bα α ε α ε α− −
= =

= + +∑ ∑  (21) 

 
Then, this is an ARMA(p, q) model with parame-

ters ia  and .jb  Similarly, we can obtain the following 
equivalent form via integration with respect to α, 

 
1 1 2 2t t t p t p tx a x a x a x ε− − −= + + + +  

1 1 2 2t t q t qb b bε ε ε− − −+ + + +                (22) 

where 

1

0

( ) .t t d tε α ε α α= ∀∫  So, we have derived an ARMA 

model of fuzzy time series so that the observation value 
at t can be expressed as a linear combination of the past 
observations and modeling errors. Note that the coeffi-
cients in (20) are different from those in (21) and (22). 

3.2 Model Identification and Parameter Estimation 

We will discuss the model identification and pa-
rameter estimation issues for a fuzzy time series under 
the new framework in this section. 

 
3.2.1 Model identification 

The goal of model identification is to determine the 
type and the order of a fuzzy time series model. As men-

tioned above, how to determine the order of the model 
for a fuzzy time series has been an issue in fuzzy time 
series modeling. We will present two different methods 
in this section, each of which has its own strengths and 
weaknesses. 

 
A. Time series modeling approach 

As { }tx  is an ordinary time series, all techniques 
for time series analysis can be used for { }.tx  For exam-
ple, the autocorrelation function and the partial autocor-
relation function, and even the corresponding power 
spectra are useful tools for this purpose (Box et al., 
1994). To identify the model, we may estimate the auto-
correlation function of { },tx  and check if there is a cut-
off after a finite lag. If there is a cutoff after a finite lag, 
say q, then { }tx  may be modeled by an MA(q) model. If 
there is no cutoff, then estimate the partial autocorrela-
tion function of { }tx  and check if there is a cutoff after a 
finite lag, say p. If the partial autocorrelation function 
has a cutoff after p lags, then it may be modeled by an 
AR(p). If not, then an ARMA model might be needed. 
Hence, it is relatively simpler to identify an AR(p) or an 
MA(q) model. But, it is not so easy to identify an ARMA 
(p, q) model. For this reason, we will utilize the algo-
rithm proposed in Song and Esogbue (2006) to identify 
an ARMA model for a given time series. Next, we will 
briefly review the algorithm in Song and Esogbue (2006). 

Let us first review the main idea of the algorithm. 
Suppose { }tx  is a stationary time series. Then, { }tx  can 
be modeled in general by the following difference equa-
tion: 

 
1 1 2 2t t t p t p tx a x a x a x ξ− − −= + + + +  

1 1 2 2t t q t qb b bξ ξ ξ− − −+ + + +            (23) 

 
where { }tξ  is an i.i.d. modeling error process, p and q 
are the orders of the model, and this is an ARMA proc-
ess and denoted as ARMA(p, q). To motivate our algo-
rithm, let us rewrite ARMA(p, q) model (23) in a differ-
ent form as follows: 
  

1 1 2 2t t t p t p tx a x a x a x γ− − −= + + + +   (24) 
 

where  
 

1 1 2 2t t t t q t qb b bγ ξ ξ ξ ξ− − −= + + + +   (25) 
 
and { tγ } can be regarded as an MA(q) time series. Ob-
viously, (23) is equivalent to (24) and (25) combined. 
That is, we purposefully decompose an ARMA(p, q) 
time series into two processes: one is an autoregressive 
process and the other a moving average process. tγ  can 
be seen as the model error in (24). But, it is not required 
here that tγ  be uncorrelated, as implied by (25). Instead, 

tγ  could be correlated and it is the correlation of tγ  that 
we can draw information from about q based on a cho-
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sen value of p.  
The algorithm can be explained as follows. Sup-

pose that both (24) and (25) are time series. We pick a 
value for p of the autoregressive part. Applying an esti-
mation algorithm, we obtain a set of model parameters 
of 1 2, , , .pa a a  Then, from this AR(p) model we obtain 
a model residual time series { tγ }. If this time series is a 
white noise, then its autocorrelation function has a value 
of virtually zero for any non-zero lags, and this charac-
teristic is very easy to recognize. In this case, we have 
identified p correctly and we know that the model is an 
AR(p). If { tγ } is correlated, and if its autocorrelation 
function has a cutoff after q lags, then { tγ } is an MA(q) 
time series and we need to add an MA(q) part to the 
model. Otherwise, if its autocorrelation function has tail-
off, it means that { tγ } is either an autoregressive or a 
mixed time series. In either case, it suggests that in (24) 
the p value was not chosen properly. If so, we simply 
increase p by 1, and repeat the above process.  

To determine the value of p, we will utilize a statis-
tical hypothesis test. As is known, the autocorrelation 
function values of a white noise are zero for all non-zero 
lags. For the estimated autocorrelation function of a 
white noise, the autocorrelation coefficient lρ  can be 
regarded as a random variable whose variance can be 
approximated with the following formula (Box et al., 
1994),  

 
1
N

σ =    (26) 

 
where N is the sample size of the data used to calculate 
the autocorrelation function. Thus, for a given signifi-
cance level ,τ  if the percentage of autocorrelation coef-
ficients lρ  of non-zero lags that are outside the confi-
dence interval ( ,k kσ σ− ) is less than 1-τ  where k is 
chosen properly, then there is a strong reason to believe 
that the residual process is a white noise. Otherwise, we 
need to test further whether the residuals are a moving 
average or an autoregressive time series. The following 
Algorithm 1 can be used to determine the value of either 
p or q, depending on the input data of the algorithm. 
However, in the description, it is assumed to determine 
the value of q. 

 
Algorithm 1 
Step 1. Define a significance level ,τ  pick a positive 

number k, and estimate σ  using (26). Set l = 0. 
Go to Step 2. 

Step 2. If lρ  is outside the confidence interval ( ,kσ−  
kσ ), set l = l+1, and repeat Step 2. Else, go to 
Step 3. 

Step 3. Calculate the percentage φ  of autocorrelation 
coefficients lρ  that are outside of the confidence 
interval from lag l to the maximum lag. If φ  is 
less than or equal to 1- ,τ  then let q = l and stop. 
Else, q is undetermined and stop. 

Once the order of the model has been determined, 
we need to estimate the parameters in the model. After 
that, the probability structure of the model errors will be 
checked, and if needed the above algorithm will be run 
with a different order values. The above algorithm can 
be used as a subroutine in the following main algorithm. 

 
Main Algorithm: 
Step 1. Use Algorithm 1 to test if the time series is AR 

or MA. If neither, let p = 0, and go to Step 2. 
Step 2. Let p = p+1. Estimate the parameters of AR(p), 

and calculate model residuals. Use Algorithm 1 
to test if the residuals are an MA time series. If 
yes, then go to Step 3 with q identified. Else, re-
peat Step 2. 

Step 3. Estimate parameters for the tentative model 
ARMA(p, q), and calculate model residuals. 
Then use Algorithm 1 to test if the residuals are 
a white noise process. If yes, stop. Else, go to 
Step 2. 

 
The above algorithm has been applied to model some 

time series published in the literature with very satisfac-
tory results. All models can be built automatically with-
out human interventions (Song and Esogbue, 2006). It is 
my belief that this algorithm can be used to build an 
ARMA(p, q) fuzzy time series model without much di-
fficulty, and thus we will leave the details to readers. 

 
B. Sample autocorrelation/partial autocorrelation 

function approach 
This approach has been already employed partially 

in Song (2003) where the sample autocorrelation func-
tion is used. Sample autocorrelation function works well 
if the time series is an MA, but not if the time series is 
an AR. So, we will revise the approach here to incorpo-
rate partial autocorrelation functions and to utilize the 
two algorithms of the preceding section.  

As shown above, for a given α  we can obtain a 
time series { }( )tx α  from a fuzzy time series { }.tF  This 
is an ordinary time series and therefore we can calculate 
the sample autocorrelation function and even the sample 
partial autocorrelation function of { }( ) .tx α  With Algo-
rithm 1, if the sample autocorrelation function has a 
cutoff after a finite number of lags, this implies that an 
MA model might be a proper model for { }( ) .tx α  But, 
when α changes, we will have a different time series. 
The sample autocorrelation function of the new time 
series may or may not have a cutoff after a finite number 
of lags. To have a better picture of the fuzzy time series, 
we can calculate the α-contour average sample autocor-
relation function of the fuzzy time series, as explained in 
Section 2.2. Intuitively, if a fuzzy time series can be 
modeled by an MA(q) model, then for each α, the de-
rived time series { }( )tx α  should be modeled approxi-
mately by an MA(q) model. Likewise, with Algorithm 1 
if the sample partial autocorrelation function of { }( )tx α  
has a cutoff after a finite number of lags, then it implies 
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that { }( )tx α  may be modeled properly by an AR(p) mo-
del. If we calculate the α-contour average sample partial 
autocorrelation function of the fuzzy time series, then it 
may provide useful modeling information about the 
fuzzy time series as a whole. For example, if the α-
contour average sample partial autocorrelation function 
has a cutoff after a finite number of lags, then there is a 
strong belief that the fuzzy time series can be modeled 
properly by an AR model. 

If neither the sample autocorrelation function nor 
the sample partial autocorrelation function can provide 
enough information, then further actions are needed. We 
provide only an outline here as details can be imple-
mented similarly to the main algorithm of the previous 
section.  

Suppose we use the α-contour average sample 
autocorrelation function. For each α value, we have ob-
tained a time series { }( ) .tx α  Suppose also that the α-
contour average sample autocorrelation function does 
not have a cutoff after a finite number of lags. Then, we 
can assume that each time series { }( )tx α  might be an 
ARMA series. So, we may assume that the order of the 
AR part is p, and apply it to time series { }( )tx α  for each 
α value. Then, estimate the parameters for the AR model, 
and calculate the modeling error time series for each α  
value. Finally, we calculate the α-contour average sam-
ple autocorrelation of the error time series. If the α-
contour average sample autocorrelation has a cutoff af-
ter a finite number of lags q, we take the model as ARMA 
(p, q). Then, we estimate the parameters of the model 
and check the modeling error again. If the α-contour 
average sample autocorrelation function of the model 
error has all zeros for all non-zero lags, then the model 
is believed to be proper. Else, we increase p by 1, and 
repeat the whole process until a stopping criterion is 
satisfied. This process is very similar to the one in Sec-
tion A, and can be generalized to use the other two 
measures of Section 2.2 to calculate the corresponding 
sample autocorrelation/partial autocorrelation functions.  

However, there is a difficulty in choosing the stop-
ping criterion for this algorithm. This is because here we 
are working with a family of time series instead of a 
single one. In this case, we may not be able to see that 
all the correlation functions have a cutoff after the same 
finite number of lags at all times. To handle this issue, 
one approach is to calculate the percentage of the model 
errors with different α values that have a cutoff after a 
finite number of lags. If the percentage exceeds a critical 
value, then we regard the autocorrelation function has a 
cutoff after a finite number of lags. But, it should be 
regarded as an open problem how to choose a stopping 
criterion for this algorithm in general. 

 
3.2.2 Parameter estimation 

Once a model is identified, the parameters of the 
model can be estimated by using the least square method. 
For an AR(p) model, ia (i = 1, 2, …, p) will be esti-

mated, and for an MA(q) model, jb (j = 1, 2, …, q), 
and for an ARMA(p, q) model, ia (i = 1, 2, …, p) and 

jb (j = 1, 2, …, q) will be estimated. This can be done 
by using a few different approaches. First, we may use 
{ }tx  directly as the data in estimating the parameters. 
The parameters should be such that the total square er-
rors of the model are minimal, i.e., 

 
min ( 1 2 21t t p t pt

t
x a x a x a x− −−− − − −∑  

)2
1 2 21 t q t qtb b bε ε ε− −−− − − −             (27) 

 
Second, we may select different α values iα  for i = 

1 to N and determine the corresponding real numbers for 
each fuzzy set to obtain { }( ) .t ix α  This forms an ordinary 
time series. For each of such time series, apply model 
(21) and use the least square method to minimize the 
following objective function,  

 

min ( 1 21 2
1

N
i ii i

i t p t pt t
t i

x a x a x a xα αα αα −− −
=

− − − −∑ ∑  

)2
1 21 2

i i i
q t qt tb b bα α αε ε ε −− −− − − ⋅ ⋅ ⋅ −        (28) 

 
The second form is to minimize the weighted sum 

of the squares of model errors. Both (27) and (28) can 
be used for AR and MA models. 

3.3 Forecasting 

Once a model is identified and built, forecasting 
can be performed using the following formula if we 
have an AR model,  

 
1 1 2 2ˆ ( ) ( ) ( ) ( )t t t p t px a x a x a xα α α α− − −= + + +  (29) 

 
where ˆ ( )tx α  is a real number of the universe of dis-
course of the fuzzy time series at t and α  is a pre-
selected value satisfying 0 1α< ≤ . For different values 
of ,α  we may have different ˆ ( ).tx α  Thus, we could ob-
tain a fuzzy set as the forecast of the fuzzy time series at 
time t. In other words, by applying the forecasting 
model (29) we are able to obtain a fuzzy set as the fore-
cast, which is consistent with the existing literature. We 
can also defuzzify this fuzzy forecast, if we wish. 

For an MA model, we need to first estimate ˆ ( )te α  
using (17), and then use the following to forecast 

 
1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )t t t q t qx e a e a eα α α α− −= + + +    (30) 

for all α values. In the case where ( )tx α  is unknown, 

ˆ ( )te α  can be estimated using the average of 1 2ˆ ˆ( ),t te eα− −  
( ), .α  

For an ARMA model, we need also to first estimate 
the errors ˆ ( )te α  using (20), and use the following to 
forecast, 
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1 1ˆ ( ) ( ) ( )t t p t px a x a xα α α− −= + +  

1 1ˆ ˆ ˆ( ) ( ) ( )t t q t qe b e b eα α α− −+ + + +        (31) 

Again, in the case where ( )tx α  is unknown, ˆ ( )te α  
can be estimated using the average of 1 2ˆ ˆ( ), ( ),t te eα α− −  
All the forecasts are fuzzy sets. 

3.4 Characteristic Equations and Asymptotic 
Behaviors 

Model (14) defines a dynamic system which de-
scribes collectively how a fuzzy time series may evolve 
with time. The characteristic equation of (14), given 
below, may provide information about the asymptotic 
behavior of a fuzzy time series, 

2
1 21 0p

pa z a z a z− − − ⋅ ⋅ ⋅ − =   (32) 

where z is a complex number. From the dynamic system 
theory (Nise, 2004), we know that if all the roots of (32) 
are inside the unit circle on the z-plane, then (14) is as-
ymptotically stable. If one or more roots are outside of 
the unit circle, then (14) is unstable. From the magnitude 
and distribution of the roots of the characteristic equa-
tion, we may infer the asymptotic behavior, such as 
whether it will diverge or not as t approaches infinity, 
about a fuzzy time series, or whether it is bounded, etc. 
There is potentially a lot to do on this aspect. 

3.5 Multivariate Models 

Multivariate models were proposed in (Song and 
Chissom, 1993a), but no applications of the proposed 
models have been reported in the literature yet. One of 
the reasons for the lack of application of the proposed 
multivariate models might be that such models are not 
easy to implement. Nevertheless, different models of 
multivariate fuzzy time series have been reported re-
cently (Hsu et al., 2003; Lee et al., 2006). In this section, 
we consider different multivariate models. 

Suppose we have multiple fuzzy time series { },tF  
{ },tH  and { }.tR  It is assumed that the current value of 
{ }tF  can be modeled by its own past values and by the 
current and/or the past values of { }tH  and { }tR  as well. 
To model this relationship, we can extend model (13) to 
have the following  

1 1 1

1 1
0 0 0

( ) ( ) ( )t t p t px d a x d a x dα α α α α α α α α− −= + +∫ ∫ ∫  

1 1

1 1
0 0

( ) ( )t q t qb u d b u dα α α α α α− −+ + +∫ ∫  

1 1 1

1 1
0 0 0

( ) ( ) ( )t w t w tc v d c v d dα α α α α α ε α α α− −+ + ⋅ ⋅ ⋅ + +∫ ∫ ∫  (33) 

or equivalently, 
 

1 1 1

p q w

t i t i j t j k t k t
i j k

x a x b u c v ε− − −
= = =

= + + +∑ ∑ ∑     (34) 

 
where ( )tu α  and ( )tv α  are the inverse membership func-

tions of { }tH  and { },tR  respectively, 

1

0

( ) ,t tx x dα α α= ∫  

1

0

( )t tu u dα α α= ∫ , 

1

0

( ) ,t tv v dα α α= ∫  

1

0

( )t t dε ε α α α= ∫ , p, q, 

and w are positive integers, determined by applying 
some identification methods as before. After p, q, and w 
are determined, the parameters , ,i ja b  and kc  can be 
estimated with the least square method while the objec-
tive function can be of the forms similar to (27) or (28). 
Model (33) can be generalized to an arbitrary number of 
fuzzy time series cases. 

3.6 Modeling Trends in Fuzzy Time Series 

It is possible to find a trend existing in a fuzzy time 
series. This trend is usually hidden in the fuzzy observa-
tions over time. We may say the economy becomes bet-
ter and better, or my friend is becoming richer and richer. 
Evidently, there is a trend in the phenomenon described 
using words. There are some literatures available han-
dling trends in fuzzy time series (Sah and Degtiarev, 
2005). In this section, we propose a different approach 
to modeling trends in fuzzy time series. 

Suppose { }tF  is a fuzzy time series. Define a fuzzy 
time series { }tF∇  as the difference between tF  and 1tF −  
where 1( ) ( ) ( )t t tx x xα α α∇ −= −  defines the universe of dis-
course of fuzzy set tF∇  , .tα∀  That is, the universe of 
discourse of fuzzy set tF∇  is determined by those of tF  
and 1.tF −  The membership function ( ( ))F tt xμ α∇∇  is de-
fined by ( )F tt xμ α∇∇ =  for a given α. Thus, { }tF∇  is a 
well-defined fuzzy time series. Therefore, a proper mo-
del can be built for { }tF∇  using the model building 
method, for example, introduced in Section 3.2.1. Sup-
pose the value of { }tF∇  can be forecasted at t+1. Note 
that 1( ) ( ) ( ).t t tx x xα α α∇−= +  Hence, if we know ( )tx α  
and 1ˆ ( ),tx α+∇  the forecasted value of 1( ),tx α+∇  we can 
calculate the forecast value of { }tF  at t+1, i.e., 1ˆ ( )tx α+ =  

1ˆ( ) ( ).t tx xα α∇ ++  If necessary, we may consider repeating 
this differencing and modeling approach for a few times 
if the trend in the fuzzy time series is complicated.  

Particularly, suppose that { }tF∇  can be modeled as 
an AR(p) model. That is, there is an integer p > 0 such 
that  

 
1 1 2 2t t t p t p tx a x a x a x ξ∇ ∇ ∇ ∇− − −= + + + +     (35) 

 
where ,ia  for i = 1, 2, …, p, are determined optimally. 
If 1 2( ), ( ), , ( )t t t px x xα α α∇ ∇ ∇− − −  are known for each α, 
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then the forecast value of ( )tx α∇  can be obtained by the 
following formula 
 

1 2 2ˆ ( ) ( ) ( ) ( ).t i t t p t px a x a x a xα α α α∇ ∇ ∇ ∇− − −= + + +  (36) 
 
Hence, if 1( )tx α−  is also known, then the forecast 

of ( )tx α  can be determined by  
 

1 1ˆ ˆ( ) ( ) ( )t t tx x xα α α∇− −= +  α∀   (37) 
 

where 0 1.α< ≤  Evidently, (35) can be replaced by an 
MA or an ARMA model to estimate .tx∇  

3.7 Modeling Seasonalities in Fuzzy Time Series 

Seasonalities in fuzzy time series, or modeled with 
fuzzy set theory, have been studied in the literature (Chang, 
1997; Song, 1999; Tseng and Tzeng, 2002). In this sec-
tion, we propose a new approach to modeling seasonal 
fuzzy time series.  

According to the definition of seasonal fuzzy time 
series (Song, 1999), a fuzzy time series { }tF  is seasonal 
if there is a minimum positive integer S such that t SF + =  

tF  for all t. From this definition, for a given α value, 
then it is natural to obtain the following relation  

 
( ) ( )t S tx xα α+ =    (38) 

 
for any t. Thus, the sequence { }( )tx α  is an ordinary sea-
sonal time series. Hence, we can build a model for a 
seasonal fuzzy time series. One approach is to use fuzzy 
logic relations as models and construct a model for each 
seasonal index (Song, 1999). Numerical results indicate 
that this is a practical and viable approach. Nevertheless, 
we will explore a different approach in this section un-
der the new framework.  

Suppose S is the periodicity of a seasonal fuzzy 
time series { }tF  and suppose for a given α value, { }( )tx α  
is a seasonal time series. Then, { }( )tx α  can be modeled 
as follows, 

 
( ) ( ) ( ) ( )S S

t tB x B aα αΦ = Θ   (39) 
 

where 
SB  is the differencing operator defined as ( )tx α  

( ), ( )t S tx aα α−−  is the model error, and ( )SBΦ  and ( )SBΘ  
are polynomials of .SB  (39) relates ( )tx α  and ( ),t Sx α−  

2 ( ),t Sx α−  etc., which are a multiple of S lags apart from 
each other. If { }( )ta α  is correlated, then it can be mod-
eled as follows. 

 
( ) ( ) ( ) ( )t tB a Bφ α θ ε α=   (40) 

 
where { }tε  is a white noise process. Combining (39) 
and (40) will yield  

 
'( ) '( ) ( ) '( ) '( ) ( )S S

t tB B x B Bφ α θ ε αΦ = Θ   (41) 

where '( ), '( ), '( ),SB B Bφ θΦ  and '( )SBΘ  are polynomials 
of certain orders. Detailed algorithms can be found in 
Song and Esogbue (2008) on how to identify (41). For 
simplicity, we may take the following forms '( ) 'Bφ Φ  

( )
1

( ) ,
p

S i i S
i i

i
B a B b B +

=

= +∑  and (
1

' ( ) '( )
q

S i
i

i
B B c Bθ

=

Θ = +∑  

)i S
id B ++ , albeit other forms exist. Then, we will have 

the following difference equation  
 

1 1
( ) ( ) ( )

p p

t i t i i t i S
i i

x a x b xα α α− − −
= =

= +∑ ∑  

 
0 1

( ) ( )
q q

j t j j t j S
j j

c dε α ε α− − −
= =

+ +∑ ∑    (42) 

 
where , , ,i i ja b c  and jd  are coefficients to be estimated 
and 0 1.c =  To calculate the modeling error fuzzy time 
series { },iE  use the following recursive definitions 
 

( ) 0tε α =    (43) 
 

for t = 0, 1, 2, …, 2S-1 assuming , ,S p q≥  and  
 

1 1
( ) ( ) ( ) ( )

p p

t t i t i i t i S
i i

x a x b xε α α α α− − −
= =

= − −∑ ∑  

0 1
( ) ( )

q q

j t j j t j S
j j

c dε α ε α− − −
= =

− −∑ ∑      (44) 

 
2t S∀ ≥  where the coefficients are different from those 

in (42).  
Now, multiply α to both sides of (42), and integrate 

both sides with respect to α, we will have the following  
 

1 1 1

1 10 0 0

( ) ( ) ( )
p p

t i t i i t i S
i i

x d a x d b x dα α α α α α α α α− − −
= =

= +∑ ∑∫ ∫ ∫  

1 1

1 10 0

( ) ( )
q q

j t j j t j S
j j

c d d dα ε α α α ε α α− − −
= =

+ +∑ ∑∫ ∫  

 
Or equivalently, 
 

1 1 1 1

p p q q

t i t i i t i S i t i i t i S
i i j j

x a x b x c dε ε− − − − − −
= = = =

= + + +∑ ∑ ∑ ∑  (45) 

where 

1 1

0 0

( ) , ( )t i t i t i t ix x d dα α α ε α ε α α− − − −= =∫ ∫  and t i Sε − −  

1

0

( ) .t i S dα ε α α− −= ∫  Model (45) can be built using the al-

gorithm presented in Section 3.2.1 with some minor 
changes. However, there should be no difficulties in 
doing so. When there exists a local trend in the fuzzy 
time series in addition to seasonality, the method in Sec-
tion 3.6 can be used to build a proper seasonal model. 
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4.  CONCLUSIONS 

In this paper, a new framework of autoregressive 
fuzzy time series models is outlined and issues are dis-
cussed on how to build a new fuzzy time series model, 
how to forecast a fuzzy time series, how to model trends 
and seasonalities, and how to model multivariate fuzzy 
time series. The motivation for developing such a new 
framework is to overcome the three major difficulties or 
drawbacks in applying the existing fuzzy time series 
models, i.e., the fuzzy relation models, and the rule-
based models. With the existing models, it is hard to 
determine the type, or the order of the model in advance, 
it is hard to implement a high-order model (except for 
rule-based models), and it is hard to analyze a fuzzy 
time series via models. It is believed that these three 
major difficulties or drawbacks can be ameliorated or 
resolved to a large extent with the new framework. It 
must be admitted that all the results presented here are 
still preliminary, and more effort is needed to make the 
framework complete. Particularly, there may be some 
theoretical issues involved that need a better understand-
ing. These constitute research subjects in the near future. 

It can be seen that the main idea is to derive an or-
dinary time series using the α-level point ,xα  and model 
all the α-level points collectively using a weighted sum 
of the data. As a result, model identification and build-
ing algorithms widely used in time series analysis can be 
borrowed with some modifications or enhancements 
(Box et al., 1994). 

However, to build a new fuzzy time series model 
proposed in this paper, a large amount of historic data is 
required to ensure the validity of the model. When only 
a handful data are available, it is difficult to apply the 
modeling technique to build a valid new autoregressive 
fuzzy time series model. In this case, it is suggested to 
resort to the existing fuzzy time series models, such as 
the fuzzy relation models or the rule-based models. Ap-
plications of the new models are quite straightforward, 
and will be reported elsewhere. 
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