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Fuzzy Local Linear Regression Analysis

Dug Hun Hong? - Jong—Tae Kim?2)

Abstract

This paper deals with local linear estimation of fuzzy regression models
based on Diamond(1998) as a new class of non-linear fuzzy regression.
The purpose of this paper is to introduce a use of smoothing in testing
for lack of fit of parametric fuzzy regression models.

Keywords : Fuzzy Linear Regression, Fuzzy Regression Models, Local
Linear Estimation

1. Introduction

Fuzzy linear regression provides a means for tackling regression problems
lacking a significant amount of data for determinant regression models and with
vague relationships between the dependent variable and independent variables.

The concept of fuzzy regression analysis was introduced by Tanaka et al.
(1982), where an LP-based method with symmetric triangular fuzzy parameters
was proposed. Similar to traditional least-squares, Diamond (1998) defined a
distance on a triangular fuzzy number space to measure the best fit for the
regression model to observed data, and then derived regression parameters based
on the distance. Diamond’s model is well corresponding to traditional least squares
regression. Diamond and Korner (1997) discussed the Z, optimization of LR-fuzzy
numbers and applied this concept to least squares estimation of linear models.
Hong and Hwang(2003, 2004) studied for support vector regression machines and
the extended fuzzy regression models using regularization method, respectively.
Hong et al (2006) suggested the regression method of predicting fuzzy
multivariable nonlinear regression models using triangular fuzzy numbers.
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In this paper,

we concentrate on the model of Diamond (1998). Diamond
proposed the so-called fuzzy least squares. This paper introduces a new class of
non-linear fuzzy regression which deals with local linear estimation of fuzzy
regression models.

2. preliminaries
Let R be the set of real numbers and let X

(m,a,8) be a triangular fuzzy
number where m is the modal value of X and a and § are the left and right
spreads, respectively. Diamond(1998) gave a metricd on the space7(R) of all
triangular fuzzy numbers by

d(X, Y)2: (mX_my)2+((mX_ax)_ (my_ay))Q 2.1
+((mx+6x)_(my+6y))27
where X= (my,ay.fy)and Y=

(my,ay,By) are any two triangular fuzzy numbers
in 7(R). A linear structure is defined on7(R) by

(mX, 04)(76)() (myaayaﬁy)

(mx"’myaax"'ayaﬁx"'ﬁy)
t(m,a,B) =

(tm.ta,tB), ift =0, tlm,a,B8)=(m,lt|Bltla),

ift <o0.
There are three simple fuzzy regression models considered in (2.1)
(F1): Y=a+bX, a,bER, XET(R),
(F2): Y=A+bX, b€ R A, XET(R)
(F3):

Y=A+Br, € R A, BET(R).

The corresponding least-squares optimization problems are

(M1): min{r( Zn] dla+bX,, ;)
(M2): min {r( Z (A+bX, V)P,
(M3): min {r( Zn] d(A+ Br, Y.

The models are rigorously justified by a projection-type theorem for cones on a
Banach space containing the cone of triangular fuzzy numbers. Here, we briefly
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review the local linear estimator of real function r(x).
If the function r has two continuous derivatives, then for each z<[0,1] we
have

r(u) = r(@)+ w—a)'(z)

for all v in a small neighborhood of z. In other words, r is approximately linear
in a neighborhood of z.

This suggests that we estimate r by fitting straight lines locally to the data.
Suppose that we have data (zy,Y;),,(z,,Y,) from the model (F3). Let K be a
probability density function that is unimodal, symmetric about 0 and supported on
(—1,1), and define

b

” T—x;
D(byby.x) E xi—x))Ql(( 5 -

where h > 0. Now choose the values of b, and b; that minimize D(by, b;;x).
Calling these values bAO(x) and by(z), respectively, the local linear estimator of

r(z) is by(z).. The slope, by, may be used to estimate the derivative # (x).

The local linear estimate of r(z) solves a weighted least squares problem. The
only data used in this problem are those for which «; is within a bandwidth 2 of
z. Since A is unimodal and symmetric about 0, the squared

Sule

) (22)

where

and

=1

The local linear estimator has a noteworthy property not possessed by Kkernel
estimators. This property is explained by noting that (2.2) may be written as
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[

Nlw,(z) Y, and that the weightsw;(z) satisfy

=1

Xn]{;l(x): 1 and Xn](x—xl){;l(x): 0

=1 =1

for each = in [0,1].
In this paper, we will modify this idea for the purpose of estimating fuzzy local
linear regression model.

3. Fuzzy local linear regression model

3.1 The model (F1) and (F2)

We first consider the model (F1) and (F2). We assume, throughout this section,
that A,B,Y are symmetric triangular fuzzy numbers for computational simplicity.
Suppose that observations consist of data pairs (Xﬁ/i), 1=1,2,---,n where
X, =(;6;) and Y; = (y;m;). We define

L r—x;
(A, by )= E (A+b(X, ))g.)?/(( hl

b

where h> 0 and A= (a,a). Now choose the value of A4 and & that minimize
Hy(A, by ).

Calling these value 4 =(a"a’) and b'. We note that

d(A+b(X.—2),Y. ) =3(a+blz,—x)—y, ) +2(a+bls;,—n,)*

and hence

n T—x;
L(A, b 2) = Ea—i—bx—x yi)Ql(( hl

L r—x
+23 (a+1bl6; — 7, )21;( — |
=1

To minimize H,, we consider



Fuzzy local linear regression analysis

I—Ii

= G_E(xi—x)(a+b($i_x)_yi)[(( h

=0

7 xr—x;

+4Esgn(b)6i(oz+|b|5i—m)[(( h :
=1

dHQ T

42 a+ |b|6i—17i)2[((
=1 h

=0Q.

X X,
For convenience, we denote l(( 5 l) by KA. Let

-

(Ii_ﬂf)[(i 0

YK,
=1 =1

Diz)= BE(xi—x)l(i 3E(xi—x)2[(i+221(i62i QEsgn(b)éil(i .
i=1

=1 =1 =1

Sgn(b)(si[(i E[(z

>

0

@
Il
—
-
Il
—

Therefore, we have

E (¢

* =1

a n n
b= (D) ! E z;— o)y K +2 ) sgn(b)omK;

=1
Em—lﬁ
L =1 ]
TFor the case of model (F1), by putting o= 0 in the model (F2), we have

[

H I 2l m o)k
vl Bi(x-—x)l(- En]x—x K—!—QEK(SQ

L i=1 = =1

3 (2, — 2y K +228gn s K;

L «=1 =1
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<Tablel>. Fuzzy input-fuzzy output data

= (z,6) Y=(y,n)
(21.0,2.1) (4.0, 0.8)
( 15.0, 225) (3.0, 03)
(15.0, 1.5) (3.5, 0.35)
(9.0, 1.35) (2.0 04)
(12.0, 1.2) ( 3.0, 0.45)
( 18.0, 36) (35 07)
( 6.0, 0.6 ) (2.5, 0.38)
(12.0, 2.4) (25 05)
45 ////'
asl //// B
\\\\ /// g 4
25 < \\ // //
2 \‘\\ //
\\\//

<Figure.l Fuzzy Input ,

3.2 The model (F3)

Suppose that observations consist of data pairs (z; Y, =

Fuzzy Output>

(yi,ni))7 1= 1727"'777/' Let

K be a probability density function that is unimodal, symmetric about 0 and

supported on (—1,

1). In association with the model (F3), consider the least-square

optimization problem, choosing the value of A and B that minimize

Hy(A,Bx) E (A+ Bz, — ), Y)Ql(( ‘

where A > 0. Let 4= (a,&0) and B=

r—x;

b

h

(b,8). Then we have
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dA+Blz,—x), Y. P =3(a+ble,—2)—y, ) +2 (a+ Bz, —x|—n, )

and hence

h

T T—x;
Hy(A,Bx) Ea—!—bx—x) yi)Qj(( ¢

+22 a+ple,—xl—n)? [((x_xi

=1 h

To minimize H; we consider

dZS = 6;”:1(&4—19@ 2y, )K(ff;%- .
%: 6i§n]1(xi—x)(a+b(xi—x)_yi)l((x;xi —0
ddZS = 4;71]1(044'5@ —x|- )[((x;xi —0.
d;;s _ 4i§n]1|$i—x|(a+ﬁlxi—x|_m)[((x;$i o

Therefore, by (2.2) the solution for A= (a,a) andB= (b,3) is given by the
solution 4 = (a"a") and B = (b"8")to the equation

B e e i

=1

b
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and

Yoy
::z"jlwxx)

where
) B xm(x,f
Sty

and
2, I|Ex x;((”“’h”“'
St

where




.[\.')?—‘
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<Table2>. Real input-fuzzy output data

x Y= (.1/777)
21.0 (4.0, 08)
15.0 (3.0, 03)
15.0 (3.5 0.35)
9.0 (2.0 04)
12.0 (3.0, 0.45)
18.0 (3.5, 07)
6.0 (2.5, 0.38)
12.0 (25, 05)

45

35

25

Real Input-fuzzy output
T T

<Figure.2 Real Input , Fuzzy Output>
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