• Title/Summary/Keyword: fuzzy extension

Search Result 178, Processing Time 0.023 seconds

Generalized Intuitionistic Fuzzy Soft Sets

  • Park, Jin-Han;Kwun, Young-Chel;Hwang, Jin-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.389-394
    • /
    • 2011
  • The notion of generalized intuitionistic fuzzy soft set theory is proposed. Our generalized intuitionistic fuzzy soft set theory is a combination of the generalized intuitionistic fuzzy set theory and the soft set theory. In other words, our generalized intuitionistic fuzzy soft set theory is an extension of the intuitionistic fuzzy soft set theory. The complement, "and" and "or" operations are defined on the generalized intuitionistic fuzzy soft sets. Their basic properties for the generalized intuitionistic fuzzy soft sets are also presented and discussed.

Exact Controllability for Fuzzy Differential Equations in Credibility Space

  • Lee, Bu Young;Youm, Hae Eun;Kim, Jeong Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.145-153
    • /
    • 2014
  • With reasonable control selections on the space of functions, various application models can take the shape of a well-defined control system on mathematics. In the credibility space, controlability management of fuzzy differential equation is as much important issue as stability. This paper addresses exact controllability for fuzzy differential equations in the credibility space in the perspective of Liu process. This is an extension of the controllability results of Park et al. (Controllability for the semilinear fuzzy integro-differential equations with nonlocal conditions) to fuzzy differential equations driven by Liu process.

An Approach to Identify NARMA Models Based on Fuzzy Basis Functions

  • Kreesuradej, Worapoj;Wiwattanakantang, Chokchai
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1100-1102
    • /
    • 2000
  • Most systems in tile real world are non-linear and can be represented by the non-linear autoregressive moving average (NARMA) model. The extension of fuzzy system for modeling the system that is represented by NARMA model will be proposed in this paper. Here, fuzzy basis function (FBF) is used as fuzzy NARMA(p,q) model. Then, an approach to Identify fuzzy NARMA models based on fuzzy basis functions is proposed. The efficacy of the proposed approach is shown from experimental results.

  • PDF

A Fixed Point for Pair of Maps in Intuitionistic Fuzzy Mtric Space

  • Park, Jong-Seo;Kim, Seon-Yu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.159-164
    • /
    • 2007
  • Park, Park and Kwun[6] is defined the intuitionistic fuzzy metric space in which it is a little revised from Park[5]. According to this paper, Park, Kwun and Park[11] Park and Kwun[10], Park, Park and Kwun[7] are established some fixed point theorems in the intuitionistic fuzzy metric space. Furthermore, Park, Park and Kwun[6] obtained common fixed point theorem in the intuitionistic fuzzy metric space, and also, Park, Park and Kwun[8] proved common fixed points of maps on intuitionistic fuzzy metric spaces. We prove a fixed point for pair of maps with another method from Park, Park and Kwun[7] in intuitionistic fuzzy metric space defined by Park, Park and Kwun[6]. Our research are an extension of Vijayaraju and Marudai's result[14] and generalization of Park, Park and Kwun[7], Park and Kwun[10].

An Interval Type-2 Fuzzy Perceptron (Interval 제2종 퍼지 퍼셉트론)

  • Hwang, Cheul;Rhee, Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.223-226
    • /
    • 2002
  • This Paper presents an interval type-2 fuzzy perceptron algorithm that is an extension of the type-1 fuzzy perceptron algorithm proposed in [1]. In our proposed method, the membership values for each Pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the decision boundary obtained by interval type-2 fuzzy memberships can converge to a more desirable location than the boundary obtained by crisp and type-1 fuzzy perceptron methods. Experimental results are given to show the effectiveness of our method

  • PDF

Information Quantification Application to Management with Fuzzy Entropy and Similarity Measure

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration. Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.

Shortest Path Problem in a Type-2 Fuzzy Weighted Graph (타입-2 퍼지 가중치 그래프에서의 최단경로문제)

  • Lee, Seungsoo;Lee, Kwang H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.314-318
    • /
    • 2001
  • Constructing a shortest path on a graph is a fundamental problem in the area of graph theory. In an application where we cannot exactly determine the weights of edges, fuzzy weights can be used instead of crisp weights, and Type-2 fuzzy weights will be more suitable if this uncertainty varies under some conditions. In this paper, shortest path problem in type-1 fuzzy weighted graphs is extended for type-2 fuzzy weighted graphes. A solution is also given based on possibility theory and extension principle.

  • PDF

Fuzzy Linguistic Approach for Evaluating Task Complexity in Nuclear Power Plant (원자력발전소에서의 작업복잡도를 평가하기 위한 퍼지기반 작업복잡도 지수의 개발)

  • Jung Kwang-Tae;Jung Won-dea;Park Jin-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.126-132
    • /
    • 2005
  • The purpose of this study is to propose a method to evaluate task complexity using CIFs(Complexity Influencing Factors). We developed a method that CIFs can be used in the evaluation of task complexity using fuzzy linguistic approach. That is, a fuzzy linguistic multi-criteria method to assess task complexity in a specific task situation was proposed. The CIFs luting was assessed in linguistic terms, which are described by fuzzy numbers with triangular and trapezoidal membership function. A fuzzy weighted average algorithm, based on the extension principle, was employed to aggregate these fuzzy numbers. Finally, the method was validated by experimental approach. In the result, it was validated that TCIM(Tink Complexity Index Method) is an efficient method to evaluate task complexity because the correlation coefficient between task performance time and TCI(Task Complexity Index) was 0.699.

Multisensor Data Combination Using Fuzzy Weighted Average (퍼지 가중 평균을 이용한 다중 센서 데이타 융합)

  • Kim, Wan-Joo;Ko, Joong-Hyup;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.383-386
    • /
    • 1993
  • In this paper, we propose a sensory data combination method by a fuzzy number approach for multisensor data fusion. Generally, the weighting of one sensory data with respect to another is derived from measures of the relative reliabilities of the two sensory modules. But the relative weight of two sensory data can be approximately determined through human experiences or insufficient experimental data without difficulty. We represent these relative weight using appropriate fuzzy numbers as well as sensory data itself. Using the relative weight, which is subjective valuation, and a fuzzy-numbered sensor data, the fuzzy weighted average method is used for a representative sensory data. The manipulation and calculation of fuzzy numbers can be carried out using the Zadeh's extension principle which can be approximately implemented by the $\alpha$-cut representation of fuzzy numbers and interval analysis.

  • PDF

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF