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Abstract 

Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data 

selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity 

measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and 

the relation between two measures are explained through graphical illustration. Obtained measures are useful to the application of decision 

theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to 

the decision making and fuzzy game theory. 
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1. Introduction 
 
Data quantification is the one of interesting research theme, 

in which data vagueness is represented by the real value. 
Studies on quantifying the degree of uncertainty has been 
debated between fuzzy set theory and probability [1], however 
coexistence seemed obvious due to two approaches are 
complementary rather than competitive. With the obtained 
research result can give the advantage for dealing with system 
management including reliable data selection, pattern 
recognition or even fuzzy game theoretic problem. Design of 
fuzzy entropy for calculation of uncertainty has been studied by 
numerous researchers [2-4]. Most of results were concentrated 
in the designing of fuzzy entropies [2,3], and some parts of 
them also showed the implicit results of fuzzy entropies [2]. 
Hence, to apply real data explicit fuzzy entropy has to be 
needed. In our previous results, fuzzy entropies based on the 
distance measure has been reported [5,6]. With those designed 
fuzzy entropies reliable data selection problem has been solved 
[7].  

Counter meaning of fuzzy entropy with respect to fixed data 
has been considered as the similarity measure and in our 
previous results [5]. Relation between fuzzy entropy and 
similarity measure has also studied [7]. In result [5], counter 
meaning of similarity measure was defined by dissimilarity 
measure, in which dissimilarity measure was derived through 
similarity and vise versa. Those relations give us the result that 
two measures can be obtained through counter measure 
designing. Obtained similarity measures were also designed 
with the distance measure, especially well known Hamming 

distance measure. Hence, these data analysis make possible to 
manage the system optimization or design the efficient system 
management. 

Fuzzy entropy and similarity measure are introduced to 
describe the uncertainty and certainty of data, hence data 
analysis or quantification to the decision theory and fuzzy game 
theory has been followed. In next chapter, fuzzy entropy and 
similarity results are introduced and discussed. With 
application example data quantification results from fuzzy 
entropy and similarity are verified. Applications to decision 
theory and fuzzy game theory are shown in Chapter 3. Finally, 
conclusions are followed in Chapter 4. 

 
 

2. Fuzzy Entropy and Similarity Measure 
 
Liu’s definition of fuzzy entropy is illustrated in the 

Definition 2.1, which illustrates the four properties of fuzzy 
entropy definition [2]. 

 
Definition 2.1 For ( ) A F X  and , fuzzy 
entropy has following four properties 

( ) D P X

 
(E1) ( ) 0, ( )  e D D P X  

(E2) ( )([1 / 2] ) ( )X A F Xe max e A  

(E3) , for any sharpening *( ) ( )e A e A *A  of A  

(E4)  ( ) ( ), ( )  Ce A e A A F X

 
where  is the fuzzy set in which the value of the 

membership function is .  is fuzzy set and  
is ordinary set. 

[1 / 2]X

1/ 2 ( )F X ( )P X
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Next, similarity measure between two sets is defined in 
Definition 2.2 [2]. On the contrary the properties of Definition 
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2.1 similarity measure shows that the degree of closeness 
between two sets containing fuzzy sets or ordinary sets. 

 
Definition 2.2 For and , similarity 
measure has following four properties 

, ( A B F X ) ( ) D P X

 
(S1) ( , ) ( , )s A B s B A , , (  )A B F X  

(S2) ,   ( , ) 0cs D D ( D P X )

(S3) ,( , ) max ( , ) A B Fs C C s A B ,  ( ) C F X

(S4) , , ( ) A B C F X , if  A B C , then ( , ) ( , )s A B s A C  

and ( , ) ( , )s B C s A C , 

 
( )F X  and  denote fuzzy set and ordinary set, 

respectively.  
( )P X

 

2.1 Illustrations of Fuzzy Entropy and Similarity measure 
There are many fuzzy entropy results satisfying Definition 2.1, 

following entropies can be found in our previous results [5, 6].  
Entropy of fuzzy data set with respect to the ordinary set can be 
designed using distance measure. Our previous results are 
followed as follows: 

 
( , ) neare A A ( ,[1 near Xd A A ] ) ( ,[0] ) 1  near Xd A A

C C

 

( , ) ( ,[0] ) ( ,[1] )   near near X near Xe A A d A A d A A  

( , ) neare A A 1 ( ,[0] )  near Xd A A ( ,[1  near Xd A A ] )  

 
A B and A B

(

are expressed the minimum and maximum 
value, expressions are commonly used in fuzzy set theory. 
Hence, )( ) min( ( ), ( )) A B x A x B x

( ), ( ))

and 

( )( ) max(A B x A

( d A

x B x

)B

, respectively. The distance is 

defined by 
1

1
| ( ) ( ) 



 
n

A i B i
i

|x x
n

. nearA  

represents the crisp set “near” to the fuzzy set A . nearA  can 

be utilized by various variable as . For example, 

the value of crisp set 

0 1near 

0.5A  has one when ( )A x ≥ 0.5, and is 

zero otherwise. Above fuzzy entropies are represent the degree 
of uncertainty between fuzzy set and corresponding 
deterministic ordinary set nearA .  

Next, similarity measures between two data sets are also 

followed.  

( , ) s A B ( ,[0] Xd A B ) ( ,[1] Xd A B+  )

)

( , ) 1 ( ,[0] ) ( ,[1] )    C C
X Xs A B d A B d A B  

( , ) 2 ( ,[1] ) ( ,[0]    X Xs A B d A B d A B  

 
Equations of fuzzy entropy and similarity can be also 

explained by graphical point of view. Fuzzy entropy means the 
degree of uncertainty or the dissimilarity between two data sets, 
fuzzy set and corresponding ordinary set generally. Hence, it 
can be designed through many ways satisfying Definition 2.1. 
Similarity measure represents the degree of similarity between 
all kinds of data sets. Fuzzy entropy and similarity can be 
explained by graphical illustration in Fig. 1. From Fig. 1 shaded 

area represent the common information of two fuzzy sets with 
membership functions. Hence, regions C and D satisfy the 
definition of similarity measure. Except region of C and D 
satisfy the dissimilarity between two data sets. Therefore, it is 
denoted by fuzzy entropy or dissimilarity measure. By Fig. 1 
the relation between similarity and dissimilarity has been 
emphasized in our previous result [5]. 
Total information between fuzzy sets C and D satisfies 

following relation naturally. Liu insisted that the entropy can be 
generated by similarity measure and distance measure, those 
are denoted by e s   and e d [2]. With the property of  

1s d  , we constructed the similarity measure with distance 

measure previously. In Liu’s result ,  means 

the dissimilarity measure, and it is natural to obtain following 
result. 

d 1s d  d

( , ) ( , ) ( , )   D A B d A A B d B A B 1 ( , )  s A B  
Therefore similarity measure  

1 ( , ) ( , )     s d d A A B d B A B     
is satisfied by 1s d  . 
The relation between similarity measure and dissimilarity 

measure can be derived as follows 

 ( , ) ( , ) 1 D A B s A B  (1) 

By the comparison with (1) and Fig. 1 it is clear that ( , )s A B  
is represented by graphical summation of C and D.  

 

 
Fig. 1 Gaussian type two membership functions 

  
In which the total information of two fuzzy set membership 

functions are represented by the summation of results similarity 
and dissimilarity measure. Non-convex fuzzy sets are 
uncommon for the fuzzy set theory. However, non-convex 
fuzzy membership functions same results were also obtained 
[8].   

  

2.2 Fuzzy Entropy and Similarity Measure Application 

Calculation of uncertainty and certainty for data can be 
applied to the various fields such as data classification, pattern 
recognition. Next examples show the reliable data selection 
problem and calculation of similarity measure between crisp 
data.    
Reliable data selection problem can be solved using fuzzy 
entropy and similarity measure [7]. In Fig. 2, Gaussian 
distribution is considered as the fuzzy membership function, and 
the chosen 5 student scores are also shown in. 5 students’ scores 
are chosen randomly. In Fig. 2(a), 5 students have 50, 52, 55, 57, 
and 59 points. Whereas, 12, 46, 53, 55, and 91 points are 
illustrated in Fig. 2(b). Two figures seemed clear to identify 
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which one represents middle level or average level students by 
heuristic approach. However two data sets seemed unclear by 
calculation of fuzzy entropy even more numerical calculation of 
each average. This discrepancy can be overcome through 
application of similarity measure calculation.     
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(a) First five students selection 
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(b) Second five students selection 

Fig. 2 Membership function and 5 students 
 
Mean of 65 students is 52.7. Table 1 represent that the 

second sample mean is close to the total mean value, however 
the first one is nearer to the membership degree in the view of 
membership average. Hence, it is hard to determine which one 
is reliable data for average level student. 

Another fuzzy entropy can be design as follows: 

  (2) ( , ) 2 ( , ) 2 ( , )   near near near neare A A d A A A d A A A

The average level student’s points are between 37 and 71, i.e. 

0.5
( ) 1 A x  when 37 , 71 x

0.5
( ) 0 A x  otherwise. In the 

view of fuzzy entropy computation, both cases are calculated 
for the problem of how much they are in the average level.  
 

Table 1. Sample, Membership value, and Fuzzy entropy for 

selected 5 data  

Data Information 
 

Sample Membership value Fuzzy entropy

50 0.983 

52 0.999 

55 0.987 

57 0.957 

Fig. 2(a) 

59 0.910 

0.0656 

Average 54.6 0.980 0.0656 

12 0.019 

46 0.899 

Fig.2(b) 

53 1.000 

0.0656 

55 0.987  

91 0.031 

 

Average 51.4 0.590 0.0656 

 
Computation results say that  
 

0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )   e A A d A A A d A A A  

2
(| 1 0.983 | | 1 0.999 |

5

| 1 0.987 | | 1 0.957 | | 1 0.91 |)

   

     

 

0.0656 . 
 
In the above,  has to be deleted because of 

distance between same points. Similarly, Fig. 2(b) shows that  
0.5( , )d A A A

0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )   e A A d A A A d A A A  

2
| 0.019 0 | | 0.031 0 |)

5
     

2
|1 0.899 | |1 1| |1 0.987 |)

5
       

0.0656 . 

 
Hence, the fuzzy entropy results indicate that two trials have 

same degree of uncertainty. Furthermore, they show good 
certainty because of small entropy value. However, their data 
points are not proper to represent middle level. The reason for 
the same fuzzy entropy values of two trials is originated from 
the property of complementary, that is 

. This drawback was overcome 
through similarity measure [7]. 

( ) ( ), ( )ce A e A A F X  

 

Table 2. Sample, similarity measure 

Data Information 
 

Sample Similarity measure

Fig. 2(a) 50, 52, 55, 57, 59 0.9832 

Fig.2(b) 12, 46, 53, 55, 91 0.5872 

 
With the results, similarities are calculated with designed 

similarity measure by 0.9832 and 0.5872, respectively. The 
first trial has the higher similarity value than Fig. 2(b), hence it 
can be determined that the result is the nearest average level 5 
students with only similarity measure. From this decision, with 
only similarity measure provides which trial is the most reliable 
data selection for this problem. To obtain same result fuzzy 
entropy calculation is needed more statistical information. 
Whereas compared to those results of fuzzy entropy, similarity 
measure has explicit advantage for reliable data selecting. 
Similarity computation of single data with respect to the data 
set is also carried out by the similarity measure design [9].  

Similarity measure design between single data and data set 
were proposed by Chen et al. [10]. They had designed the 
similarity measure with fuzzy number and related knowledge in 
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( , ) 2 (( ),[1] ) (( ),[0] )

2 (([0] ,[1] ) (([1] ,[0] )

2 1 1 0

    
  
   

X X

X X X X

s A B d A B d A B

d d

 

fuzzy set theory. However, similarity measure could be 
designed only for triangular or trapezoidal fuzzy membership 
function, if fuzzy number method is used [10]. 

 

 

)1;3.0,3.0,3.0,3.0()0.1;2.0,2.0,2.0,2.0(
~~
 BA  

Fig. 3 Set 7 of Fig. 10 in [10] 
 
Above example shows the similarity measure computation 

difference between based on fuzzy number and distance 
measure. Fig. 3 is expressed clearly as the different singleton 
pair, so it is questionable whether the degree of similarity 
between two single data satisfies 0.9 except when matching the 
fuzzy membership functions pair of Sets 2 and 6. It is 
commonly required that the similarity between two different 
crisp sets must be zero. Next, with similarity measure based on 
distance measure comparisons are carried out for the 
aforementioned paper example [10].  

   (3) )]0[),(()]1[),((2),( XX BAdBAdBAs 

Our computation results with (3) are illustrated in Table 3.  
 

Table 3. Comparison with the results of Chen and Chen 

Similarity Computation 
Figure 10 

in [10] 
Lee[9] 

Chen and 
Chen 

Set1 0.839 0.8357 

Set2 1 1 

Set3 0.426 0.42 

Set4 0.344 0.49 

Set5 0.871 0.8 

Set6 1 1 

Set7 0 0.9 

Set8 0.476 0.54 

Set9 0.516 0.81 

Set10 0.672 0.9 

Set11 0.512 0.72 

Set12 0.618 0.78 

 
From Table 3, we notice that the 10 sets all have different 

degrees of similarity except for Set 2 and Set 6. So, (3) has a 
proper evaluation for the similarity. For the degree of similarity 
in Set 7, two membership functions are expressed clearly as a 
different singleton. Therefore, the similarity calculation value 
between the two membership functions has to satisfy zero. 
Now we can compute the Set 7 pair similarity as follows.  

Hence, proposed similarity measure based on the distance 
measure represents useful. 

 
 

3. Applications of Fuzzy Entropy and Similarity 
Measure to Management Problem 

 
Fuzzy entropy and similarity measure can be used as the tool 

of calculating the degree of dissimilarity and similarity with 
respect to the considering data. Hence, they have accessibility 
to the decision theory, system modeling or system management. 

 

3.1 Decision Theory 
For decision making, building partial consequence and 

objective compatibility have been designed through fuzzy set 
theory [11]. In order to design necessity and possibility of 
decision it is necessary to formulate objective and consequence 
as fuzzy membership function. 

Compatibility level is composed with necessity and possibility 
as following formulation: 

 , (1 ) ( , ) ( , )        i j j ij j ijk N ,  (4) 

where ( , )  j ij  and ( , ) j ijN  are denoted as possibility 

and necessity of decision. Furthermore,  j  and  ij  are 

objective and consequence for considering fact, respectively.  
Considering fuzzy membership functions  j  and  ij  are 

needed to be small entropy, because low entropy value 
guarantee more certain to the fact. Furthermore possibility is 
greater than the necessity if the similarity between objective 
and consequence membership functions become greater. In 
example of [11], the fuzzy objective ( ) j x  corresponds to 

 
450

( ) ,
75

 
j

x
x  if 375 450, x  

( ) 1, j x  if  0 375, x  

( ) 0, j x  if  450.x

 
Consequence functions satisfies  

375
( ) ,

25
 

ij

x
x  if 375 400, x  

425
( ) ,

25
 

ij

x
x  if  400 425, x  

( ) 0, ij x  if 375x  and .  425x

 
Similarity measure between j  and ij  has the following 

structure. 

 ( , )  j ijs ( ,[0] ) j ij Xd + ( ,[1] ) j ij Xd  (5) 

It is clear that similarity measure value is proportional to the 
( , )  j ij  and ( , ) j ijN  by the graphical presentation of 
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pairs j  and ij . Therefore similarity modification is also 
applicable to the decision theory. 

 

3.2 Characteristics of Relative Information Measure 
Definition of relative information has not been formulated by 

researchers. In [12], they just proposed fuzzy relative 
information measure as the fuzzy relative 
information measure of 

[ , ]R A B
B  to A . Hence, definition of fuzzy 

relative information measure will be presented through 
analyzing the definition of . [ ,R A B ]

 
Proposition 3.1 Fuzzy relative information 
measure satisfies following properties: [ ,R A ]B

] 0(i)  if and only if there is no intersection 
between 

[ , BR A
A and , or B ,A B are ordinary sets. 

(ii)  if and only if . [ , [ , ]B B A]  R
[ , ]B

[ ,B A

R A

[ , ]B

( ) ( )H A H B
(iii)  takes maximum value and 

 if and only if 

R A

 R ]R A A is contained in , i.e, B

( ) ( ) A Bx x  for  x X . 

(iv) If  A B C , then ( , ) ( , )R B A R C A  and 
( , , )) ( (, ) R A B

1

R A R BC C . 
Liu insisted that entropy can be calculated from the similarity 

measure and dissimilarity measure, which is denoted by 
[2]. With this concept relative information measure 

can be designed via similarity measure. By the definition of 
entropy for certain fact, 

s d

( )H A B and ( )H A
)

satisfy 
and , respectively. 

Where,  satisfies the same definition of 
((H ), ( ) )nearA B A B

( ) ar

 

neA B
( ,H A nearA

nearA . 
Roughly, it can be satisfied that  

 
1 (( ), ( )

[ ,R A

1 (

A

H

1 

]
1 ( , )

)  



near

near

s A B A B
B

s A A

)

  (6) 

Where,  and 
(( ), ( ) )

( ), ( )

 

   
near

near

s B A B

A B A B

( , ) ( , )nears A H A AnearA . 

This measure also satisfies Proposition 3.1. Next, another 
relative information measure satisfying Proposition 3.1 without 
virtual ordinary sets  and ( ) nearA B nearA  is considered.  

 

3.3 Fuzzy Coaliation in Game Theory  

Coalition vectors  are chosen inbetween zero and 

one, where  is a set of players. Each fuzzy coalition is 

identified with a point in the hypercube , while an 

ordinary coalition is regarded as a vertex of this hypercube, a 
point in . Hence, optimal choice of fuzzy coalition 

vector to minimized payoff function is needed. Whereas 
opponents also try to make minimized other side payoff 
function [13]. 

[0,1]  N

N

[0

[0,1]  N

,1]N

, )j u 

, )j d 

N



mi ,u i sn (U x

n (V x

min ( , )u i jU x s  

mi ,d i s min ( , )d i jV x s  

Where,  and  are number of players and 

strategies, respectively. Furthermore, and 

i j M

( , )u f x s

( , )d g x s  are inputs to minimize payoff functions. In order 

to determine input variable player participation degree is 
determined by adjusting coalition vector. Problem can be 
transformed to determine is to determine i , which constitutes 

, and it minimize . Here, 
,

1, 1


 

 
N M

i j

u i i jx s ( ,iU x )js ( ) i i ix x a  

are considered as the fuzzy set with membership values. Also 
strategies are considered as the ordinary set elements. Then, it 
is possible to calculate the similarity measure between x  and 

fixed values. It was also verified that the calculation of 
similarity measure between fuzzy set and single datum [9]. 
Hence, similarity measure is applicable to determine the 
coalition vector of fuzzy game theory.  

 
 

4. Conclusions 
 
For information data groups, each datum or data set can be 

represented by uncertainty or certainty for fixed numerical 
values. Furthermore, it also has a correlation between the 
degree of similarity and dissimilarity. These meanings are 
expressed by fuzzy entropy and similarity measure. First, fuzzy 
entropy and similarity are introduced, and discussed their 
meaning and application. Usefulness was verified through 
discussing the previous application results. Two measures are 
applied to the reliable data selection problem, and similarity 
quantification of single datum or data set with respect to the 
ordinary set or fuzzy set. Fuzzy set analysis can be also applied 
to decision theory or system management problem, especially 
in fuzzy game theory. For decision making considered 
objective and consequence are needed. Decision tools, 
necessity and possibility, are proportional to the similarity 
measure between objective and consequence membership 
function. Hence, the conventional decision procedure, 
designing compatibility level, can be replaced with similarity 
measure. Finally, for more reliable combination of strategy 
similarity measure is also useful. 
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	Abstract
	Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration. Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.
	Key Words : certainty; uncertainty; data management; fuzzy entropy; similarity measure
	1. Introduction
	Data quantification is the one of interesting research theme, in which data vagueness is represented by the real value. Studies on quantifying the degree of uncertainty has been debated between fuzzy set theory and probability [1], however coexistence seemed obvious due to two approaches are complementary rather than competitive. With the obtained research result can give the advantage for dealing with system management including reliable data selection, pattern recognition or even fuzzy game theoretic problem. Design of fuzzy entropy for calculation of uncertainty has been studied by numerous researchers [2-4]. Most of results were concentrated in the designing of fuzzy entropies [2,3], and some parts of them also showed the implicit results of fuzzy entropies [2]. Hence, to apply real data explicit fuzzy entropy has to be needed. In our previous results, fuzzy entropies based on the distance measure has been reported [5,6]. With those designed fuzzy entropies reliable data selection problem has been solved [7]. 
	Counter meaning of fuzzy entropy with respect to fixed data has been considered as the similarity measure and in our previous results [5]. Relation between fuzzy entropy and similarity measure has also studied [7]. In result [5], counter meaning of similarity measure was defined by dissimilarity measure, in which dissimilarity measure was derived through similarity and vise versa. Those relations give us the result that two measures can be obtained through counter measure designing. Obtained similarity measures were also designed with the distance measure, especially well known Hamming distance measure. Hence, these data analysis make possible to manage the system optimization or design the efficient system management.
	Fuzzy entropy and similarity measure are introduced to describe the uncertainty and certainty of data, hence data analysis or quantification to the decision theory and fuzzy game theory has been followed. In next chapter, fuzzy entropy and similarity results are introduced and discussed. With application example data quantification results from fuzzy entropy and similarity are verified. Applications to decision theory and fuzzy game theory are shown in Chapter 3. Finally, conclusions are followed in Chapter 4.

	2. Fuzzy Entropy and Similarity Measure
	Liu’s definition of fuzzy entropy is illustrated in the Definition 2.1, which illustrates the four properties of fuzzy entropy definition [2].
	2.1 Illustrations of Fuzzy Entropy and Similarity measure
	Equations of fuzzy entropy and similarity can be also explained by graphical point of view. Fuzzy entropy means the degree of uncertainty or the dissimilarity between two data sets, fuzzy set and corresponding ordinary set generally. Hence, it can be designed through many ways satisfying Definition 2.1. Similarity measure represents the degree of similarity between all kinds of data sets. Fuzzy entropy and similarity can be explained by graphical illustration in Fig. 1. From Fig. 1 shaded area represent the common information of two fuzzy sets with membership functions. Hence, regions C and D satisfy the definition of similarity measure. Except region of C and D satisfy the dissimilarity between two data sets. Therefore, it is denoted by fuzzy entropy or dissimilarity measure. By Fig. 1 the relation between similarity and dissimilarity has been emphasized in our previous result [5].
	Total information between fuzzy sets C and D satisfies following relation naturally. Liu insisted that the entropy can be generated by similarity measure and distance measure, those are denoted by  and [2]. With the property of , we constructed the similarity measure with distance measure previously. In Liu’s result ,  means the dissimilarity measure, and it is natural to obtain following result.
	 (1)

	In which the total information of two fuzzy set membership functions are represented by the summation of results similarity and dissimilarity measure. Non-convex fuzzy sets are uncommon for the fuzzy set theory. However, non-convex fuzzy membership functions same results were also obtained [8].  

	2.2 Fuzzy Entropy and Similarity Measure Application
	Calculation of uncertainty and certainty for data can be applied to the various fields such as data classification, pattern recognition. Next examples show the reliable data selection problem and calculation of similarity measure between crisp data.   
	Mean of 65 students is 52.7. Table 1 represent that the second sample mean is close to the total mean value, however the first one is nearer to the membership degree in the view of membership average. Hence, it is hard to determine which one is reliable data for average level student.
	Another fuzzy entropy can be design as follows:
	 (2)

	The average level student’s points are between 37 and 71, i.e.  when ,  otherwise. In the view of fuzzy entropy computation, both cases are calculated for the problem of how much they are in the average level. 
	With the results, similarities are calculated with designed similarity measure by 0.9832 and 0.5872, respectively. The first trial has the higher similarity value than Fig. 2(b), hence it can be determined that the result is the nearest average level 5 students with only similarity measure. From this decision, with only similarity measure provides which trial is the most reliable data selection for this problem. To obtain same result fuzzy entropy calculation is needed more statistical information. Whereas compared to those results of fuzzy entropy, similarity measure has explicit advantage for reliable data selecting. Similarity computation of single data with respect to the data set is also carried out by the similarity measure design [9]. 
	Above example shows the similarity measure computation difference between based on fuzzy number and distance measure. Fig. 3 is expressed clearly as the different singleton pair, so it is questionable whether the degree of similarity between two single data satisfies 0.9 except when matching the fuzzy membership functions pair of Sets 2 and 6. It is commonly required that the similarity between two different crisp sets must be zero. Next, with similarity measure based on distance measure comparisons are carried out for the aforementioned paper example [10]. 
	  (3)



	3. Applications of Fuzzy Entropy and Similarity Measure to Management Problem
	3.1 Decision Theory
	,  (4)
	+ (5)

	3.2 Characteristics of Relative Information Measure
	  (6)
	Where,  and
	.
	This measure also satisfies Proposition 3.1. Next, another relative information measure satisfying Proposition 3.1 without virtual ordinary sets  and  is considered. 

	3.3 Fuzzy Coaliation in Game Theory 
	Coalition vectors  are chosen inbetween zero and one, where  is a set of players. Each fuzzy coalition is identified with a point in the hypercube , while an ordinary coalition is regarded as a vertex of this hypercube, a point in . Hence, optimal choice of fuzzy coalition vector to minimized payoff function is needed. Whereas opponents also try to make minimized other side payoff function [13].
	Where,  and  are number of players and strategies, respectively. Furthermore, and  are inputs to minimize payoff functions. In order to determine input variable player participation degree is determined by adjusting coalition vector. Problem can be transformed to determine is to determine, which constitutes , and it minimize . Here,  are considered as the fuzzy set with membership values. Also strategies are considered as the ordinary set elements. Then, it is possible to calculate the similarity measure between  and fixed values. It was also verified that the calculation of similarity measure between fuzzy set and single datum [9]. Hence, similarity measure is applicable to determine the coalition vector of fuzzy game theory. 


	4. Conclusions
	For information data groups, each datum or data set can be represented by uncertainty or certainty for fixed numerical values. Furthermore, it also has a correlation between the degree of similarity and dissimilarity. These meanings are expressed by fuzzy entropy and similarity measure. First, fuzzy entropy and similarity are introduced, and discussed their meaning and application. Usefulness was verified through discussing the previous application results. Two measures are applied to the reliable data selection problem, and similarity quantification of single datum or data set with respect to the ordinary set or fuzzy set. Fuzzy set analysis can be also applied to decision theory or system management problem, especially in fuzzy game theory. For decision making considered objective and consequence are needed. Decision tools, necessity and possibility, are proportional to the similarity measure between objective and consequence membership function. Hence, the conventional decision procedure, designing compatibility level, can be replaced with similarity measure. Finally, for more reliable combination of strategy similarity measure is also useful.

	Acknowledgment
	This work was supported by 2nd BK21 Program, which is funded by KRF (Korea Research Foundation). This work was also supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0020163)

	References
	Hong-mei Wang received the B.S degree in Automation Control Engineering at Qingdao University, China, in 2006. Now she is in School of Mechatronics Engineering, Changwon National University, Korea, for M.S degree. Her research interests include in the area of designing system applied for wireless communication modem and various systems required advanced digital signal processing
	E-mail : iwanghongmei99@163.com
	Sanghyuk Lee received the B.S. in EE from Chungbuk National University, in 1988, M.S. and Ph.D. degrees in EE from Seoul National University, in 1991 and 1998, respectively. Dr. Lee served as a Research Fellow from 1996 to 1999 in HOW Co.. Currently, he has been with Inha University as a Research Professor in Institute for Information and Electronics. His research interests include fuzzy theory, game theory, controller design for linear and nonlinear systems. 
	E-mail : leehyuk@inha.ac.kr







