• Title/Summary/Keyword: functional theory

Search Result 1,147, Processing Time 0.023 seconds

CRITICAL POINTS RESULT FOR THE C1,1 FUNCTIONAL AND THE RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.437-445
    • /
    • 2008
  • We show the existence of at least four nontrivial critical points of the $C^{1,1}$ functional f on the Hilbert space $H=X_0{\oplus}X_1{\oplus}X_2{\oplus}X_3{\oplus}X_4$, $X_i$, i = 0, 1, 2, 3 are finite dimensional, with f(0) = 0 when two sublevel subsets, torus with three holes and sphere, of f link, the functional f satisfies sup-inf variatinal linking inequality on the linking subspaces, the functional f satisfies $(P.S.)_c$ condition, and $f{\mid}_{X_0{\oplus}X_4}$ has no critical point with level c. We use the deformation lemma, the relative category theory and the critical point theory for the proof of main result.

  • PDF

PERIODIC SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.331-340
    • /
    • 2009
  • We show the existence of nonconstant periodic solution for the nonlinear Hamiltonian systems with some nonlinearity. We approach the variational method. We use the critical point theory and the variational linking theory for strongly indefinite functional.

  • PDF

LIMIT RELATIVE CATEGORY THEORY APPLIED TO THE CRITICAL POINT THEORY

  • Jung, Tack-Sun;Choi, Q-Heung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.311-319
    • /
    • 2009
  • Let H be a Hilbert space which is the direct sum of five closed subspaces $X_0,\;X_1,\;X_2,\;X_3$ and $X_4$ with $X_1,\;X_2,\;X_3$ of finite dimension. Let J be a $C^{1,1}$ functional defined on H with J(0) = 0. We show the existence of at least four nontrivial critical points when the sublevels of J (the torus with three holes and sphere) link and the functional J satisfies sup-inf variational inequality on the linking subspaces, and the functional J satisfies $(P.S.)^*_c$ condition and $f|X_0{\otimes}X_4$ has no critical point with level c. For the proof of main theorem we use the nonsmooth version of the classical deformation lemma and the limit relative category theory.

Understanding DFT Calculations of Weak Interactions: Density-Corrected Density Functional Theory

  • Park, Hansol;Kim, Yeil;Sim, Eunji
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.24-28
    • /
    • 2019
  • In this work, we discuss where the failure of Kohn-Sham Density Functional Theory (DFT) occurs in weak interactions. We have adopted density-corrected density functional calculations and dispersion correction separately to find out whether the failure is due to density-driven error or functional error. The results of Benzene Ar complex, one of the most common examples of van der Waals interactions, show that DFT calculations of van der Waals interaction suffer from functional error, rather than density-driven error. In addition, errors in DFT calculations of the S22 dataset, which contains small to relatively large (30 atoms) complexes with non-covalent interactions, are governed by functional errors.

Density Functional Theory Study of Competitive Reaction Pathways of Ti+ with Fluorinated Acetone in the Gas Phase

  • Hong, Ki-Ryong;Kim, Tae-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • We investigate the doublet and quartet potential energy surfaces associated with the gas-phase reaction between $Ti^+$ and $CF_3COCH_3$ for two plausible reaction pathways, $TiF_2^+$ and $TiO^+$ formation pathways by using the density functional theory (DFT) method. The molecular structures of intermediates and transition states involved in these reaction pathways are optimized at the DFT level by using the PBE0 functional. All transition states are identified by using the intrinsic reaction coordinate (IRC) method, and the resulting reaction coordinates describe how $Ti^+$ activates $CF_3COCH_3$ and produces $TiF_2^+$ and $TiO^+$ as products. On the basis of presented results, we propose the most favorable reaction pathway in the reaction between $Ti^+$ and $CF_3COCH_3$.

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

PALAIS-SMALE CONDITION FOR THE STRONGLY DEFINITE FUNCTIONAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.461-471
    • /
    • 2009
  • Let ${\Omega}$ be a bounded subset of $R^n$ with smooth boundary and H be a Sobolev space $W_0^{1,2}({\Omega})$. Let $I{\in}C^{1,1}$ be a strongly definite functional defined on a Hilbert space H. We investigate the conditions on which the functional I satisfies the Palais-Smale condition. Palais-Smale condition is important for determining the critical points for I by applying the critical point theory.

  • PDF

A systematic approach for the development of porous concrete based on axiomatic design theory

  • Tran, X.H.;Tawie, R.;Lee, H.K.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.491-503
    • /
    • 2009
  • This paper presents a design framework developed using axiomatic design (AD) theory that can be applied in the design process of porous concrete. The main contribution of this paper is the definition of an AD framework based on the needs and functional requirements of porous concrete. The framework shows how AD theory can be used to provide guidelines for proportioning and manufacturing porous concrete. The advantage of the AD approach is that it systemizes the way to decouple design parameters and makes designers to think rationally between what we want to achieve and how we propose to satisfy the functional requirements of porous concrete. In this paper, test results of laboratory-size porous concrete specimens under compression were analyzed to evaluate the performance of the porous concrete based on the desired functional requirements.