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PALAIS-SMALE CONDITION FOR THE STRONGLY

DEFINITE FUNCTIONAL

Tacksun Jung and Q-Heung Choi∗

Abstract. Let Ω be a bounded subset of Rn with smooth boundary
and H be a Sobolev space W 1,2

0 (Ω). Let I ∈ C1,1 be a strongly
definite functional defined on a Hilbert space H. We investigate
the conditions on which the functional I satisfies the Palais-Smale
condition. Palais-Smale condition is important for determining the
critical points for I by applying the critical point theory.

1. Introduction

Let Ω be a bounded subset of Rn with smooth boundary. Let L be
an elliptic linear differential operator defined by

−L =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.

Let H be a Sobolev space W 1,2
0 (Ω) with the norm

‖u‖ = [

∫

Ω

Lu · udx]
1
2 .

Let I be a strongly definite functional defined on H which is of the form

I(u) =

∫

Ω

[
1

2
Lu · u− b(x, u(x))]dx,

where b(x, u(x)) ∈ C1(Ω̄ × H,R) is a given function. In this paper
we investigate the conditions on which the functional I satisfies the
Palais-Smale condition. We say that the functional I satisfies the Palais-
Smale condition if for any given number c ∈ R, the sequence (un)n in
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H with I(un) → c and ∇I(un) → 0 possesses a convergent subsequence.
Whether I satisfies the Palais-Smale condition or not is important for
determining the critical points for I by applying the critical point theory.

Our main results are as follows:

Theorem 1.1. Let g(x, u) = up
+, h(x, u) = up

−, with 2 < p < 2∗,
2∗ = 2n

n−2
, n ≥ 3, where u+ = max{u, 0} and u− = −min{u, 0}. Then

the functionals

I(u) =

∫

Ω

[
1

2
Lu · u− g(x, u)]dx

and

K(u) =

∫

Ω

[
1

2
Lu · u− h(x, u)]dx

satisfy the Palais-Smale condition.

Theorem 1.2. Assume that f ∈ C1(Ω̄×R, R) satisfies the following
growth conditions:
(f1) f(x, 0) = 0, f(x, u) > 0 if u 6= 0, inf x∈Ω

|u|2=R2
f(x, u) > 0,

(f2) u · fu(x, u) ≥ pf(x, u) ∀x, u,
(f3) |fu(x, u)| ≤ γ|u|ν , ∀x, u,
where C > 0, 2 < p < 2∗, 2∗ = 2n

n−2
, n ≥ 3, γ ≥ 0, µ ∈]2, 2∗[, ν ≤

2∗ − 1− (2∗ − p)(1− 2∗′
2∗ ).

Then the functional

J(u) =

∫

Ω

[
1

2
(Lu) · u− f(x, u(x))]dx (1.2)

satisfies the Palais-Smale condition.

In section 2 we obtain some results and properties of the linear oper-
ator L, and the function f . In section 2 we obtain some result on the
corresponding functional I(u) and prove Theorem 1.1. In section 3 we
obtain some results and properties of the function f and the correspond-
ing functional J(u), and prove Theorem 1.2.

Remark 1.1. We note that the function a(x, u) = |u|p, with 2 <
p < 2∗ and Ω bounded subset of Rn, satisfies the conditions (f1)-(f3).
Then the functional on H

A(u) =

∫

Ω

[
1

2
Lu · u− f(x, u)]dx

satisfies the Palais-Smale condition.



Palais-Smale condition for the strongly definite functional 463

Remark 1.2. Let u+ = max{u, 0} and u− = −min{u, 0}. Although
the functions g(x, u) = up

+, h(x, u) = up
−, with 2 < p < 2∗ and Ω bounded

subset of Rn, do not satisfy the conditions (f2), the functionals

I(u) =

∫

Ω

[
1

2
Lu · u− g(x, u)]dx

and

K(u) =

∫

Ω

[
1

2
Lu · u− h(x, u)]dx

satisfy the Palais-Smale condition.

2. Proof of Theorem 1.1

First we shall prove that the functional

I(u) =

∫

Ω

[
1

2
Lu · u− up

+)]dx, 2 < p < 2∗, 2∗ =
2n

n− 2
, n ≥ 3.

satisfy the Palais-Smale condition. The eigenvalue problem −Lu = λu
in Ω, u = 0 on ∂Ω has infinitely many eigenvalues λk, k ≥ 1 with
λ1 < λ2 ≤ . . . ≤ λk ≤ . . ., and infinitely many eigenfunctions φk be
the eigenfunction belonging to the eigenvalue λk, k ≥ 1. We need the
following proposition for applying the critical point theory:

Proposition 2.1. The functional I(u) is continuous, Fréchet differ-
entiable in H, with Fréchet derivative

∇I(u)v =

∫

Ω

[Lu · v − pup−1
+ · v]dx.

Moreover ∇I ∈ C. That is I ∈ C1.

Proof. First we prove that I(u) is continuous at u. For u, v ∈ H,

|I(u + v)− I(u)|

= |1
2

∫

Ω

(Lu + Lv) · (u + v)dx−
∫

Ω

(u + v)p
+dx− 1

2

∫

Ω

Lu · udx +

∫

Ω

up
+dx|

= |1
2

∫

Ω

(Lu · v + Lv · u + Lv · v)dx−
∫

Ω

(u + v)p
+dx− up

+)dx|.

Let u =
∑

hnφn, v =
∑

knφn. Then we have

|
∫

Ω

Lu · vdx| = |
∑

λnhnkn| ≤ ‖u‖ · ‖v‖,
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|
∫

Ω

Lv · udx| = |
∑

λnknhn| ≤ ‖u‖ · ‖v‖,

|
∫

Ω

Lv · vdx| = |
∑

λnknkn| ≤ ‖v‖2,

from which we have

|1
2

∫

Ω

(Lu · v + Lv · u + Lv · v)dx| ≤ ‖u‖ · ‖v‖+ ‖v‖2. (2.1)

On the other hand

||(u + v)+|p − |u+|p| ≤ C1|up−1
+ ||v|+ R2(|u+|, |v+|)

and hence we have

|
∫

Ω

(|(u+v)+|2−|u+|2)dx| ≤ 2‖u+‖L2(Ω)‖v‖L2(Ω)+‖v‖2
L2(Ω) ≤ 2‖u‖·‖v‖+‖v‖2,

(2.2)

|
∫

Ω

(|(u+v)+|p−|u+|p)dx| ≤ C1‖up−1
+ ‖L2(Ω)‖v‖L2(Ω)+R2(‖u‖L2(Ω), ‖v‖L2(Ω))

≤ C2‖up−1
+ ‖‖v‖+ R2(‖u‖, ‖v‖. (2.3)

Combining (2.1) with (2.2) and (2.3), we have

|I(u + v)− I(u)| = o(‖v‖2)

from which we can conclude that I(u) is continuous at u. Next we prove
that I(u) is Fréchet differentiable in H. For u, v ∈ H,

|I(u + v)− I(u)−∇I(u)v|

= |1
2

∫

Ω

(Lu + Lv) · (u + v)dx−
∫

Ω

(u + v)p
+dx

− 1

2

∫

Ω

(Lu) · udx +

∫

Ω

up
+dx−

∫

Ω

(Lu− pup−1
+ ) · vdx|

= |
∫

Ω

[
1

2
(Lv) · v − (u + v)p

+ + up
+ + pup−1

+ v]dx|.

Combining (2.1) with (2.2) and (2.3), we have that

|I(u + v)− I(u)−∇I(u)v| = O(‖v‖2). (2.4)

Thus I(u) is Fréchet differentiable in H. Similarly, it is easily checked
that I ∈ C1.
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Proof of Theorem 1.1

Let c ∈ R and (un)n be a sequence such that

un ∈ H, ∀n, I(un) → c, ∇I(un) → 0.

We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then we have

〈∇I(un), ûn〉 =
2I(un)

‖un‖ −
∫
Ω

p(un)p−1
+ · undx

‖un‖

+
2
∫
Ω
(un)p

+dx

‖un‖ −→ 0.

Hence ∫
Ω
[p(un)p−1

+ · un − 2(un)p
+]dx

‖un‖ −→ 0.

Thus there exists a constant M > 0 such that

M >|
∫

Ω

[p(un)p−1
+ · un)− 2(un)p

+]dx|

≥ |
∫

Ω

[p(un)p−1
+ · un − 2(un)p

+]dx|

≥
∫

Ω

[|p(un)p−1
+ ||un| − 2|(un)p

+|]dx

≥
∫

Ω

[|p(un)p−1
+ ||(un)+| − 2|(un)p

+|]dx

=

∫

Ω

[|p(un)p
+| − 2|(un)p

+|]dx

= (p− 2)

∫

Ω

|(un)+|pdx = (p− 2)‖(un)+‖p
Lp(Ω).

Thus

0 ←− | ∫
Ω
[p(un)p−1

+ · un − 2(un)p
+)]dx|

‖un‖

≥ (p− 2)
‖(un)+‖p

Lp(Ω)

‖un‖ .
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Since p > 2,

‖(un)+‖p
Lp(Ω)

‖un‖ converges .

On the other hand

‖p(un)p−1
+ ‖ ≤ C1‖(un)p−1

+ ‖
L2∗′ (Ω)

for suitable constant C1. Then we have

‖p(un)p−1
+

‖un‖ ‖ ≤ C1‖(un)p−1
+

‖un‖ ‖
L2∗′ (Ω)

If p ≥ 2∗
′
(p−1), then by the Hölder′s inequality, it is easily checked that

‖ (un)p−1
+

‖un‖ ‖L2∗′ (Ω)
can be estimated in terms of

‖(un)+‖p
Lp(Ω)

‖un‖ . If p ≤ 2∗
′
(p −

1), then by the standard interpolation inequalities, ‖ (un)p−1
+

‖un‖ ‖L2∗′ (Ω)
≤

C2(
‖(un)+‖p

Lp(Ω)

‖un‖ )
(p−1)α

p ‖(un)+‖β for some constant C2, where α > 0 is such

that α
p

+ 1−α
2∗ = 1

2∗′ and β = (1 − α)(p − 1) − 1 − (p−1)α
p

. Since p − 1 ≤
2∗ − 1− (2∗ − p)(1− 2∗

′

2∗ ), β < 0. Thus we have

‖p(un)p−1
+

‖un‖ ‖ ≤ C2(
‖(un)+‖p

Lp(Ω)

‖un‖ )
(p−1)α

p ‖(un)+‖β

for a constant C2. Since ‖(un)+‖p

‖un‖ converges and β < 0,

p(un)p−1
+

‖un‖ converges. (2.5)

By (2.5) and the boundedness of ûn,

〈p(un)p−1
+

‖un‖ , ûn〉 converges.

Thus by (2.5), we have

〈p(un)p−1
+

‖un‖ , ûn〉 =

∫

Ω

p(un)p−1
+

‖un‖ · ûn

=

∫
Ω(p(un)p−1

+ )·un

‖un‖
‖un‖ −→ 0.
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Thus ûn ⇀ 0. We get

∇I(un)

‖un‖ = Lûn − p(un)p−1
+

‖un‖ −→ 0.

By (2.5), Lûn converges. Since (ûn)n is bounded and the operator of
L−1 is a compact mapping, up to subsequence, (ûn)n has a limit. Since
ûn ⇀ 0, we get ûn → 0, which is a contradiction to the fact that ‖ûn‖ =
1. Thus (un)n is bounded. We can now suppose that un ⇀ u for some
u ∈ H. We claim that un → u strongly. We have that

〈∇I(un), un〉 = (‖un‖2 −
∫

Ω

[p(un)p−1
+ un]dx) −→ 0.

Since
∫

Ω
[p(un)p−1

+ un]dx −→ ∫
Ω
[pup−1

− u]dx, ‖un‖2 converge. Thus (un)n

converges to some u strongly with ∇I(u) = lim∇I(un) = 0. Thus we
prove the lemma.

For the case K(u), the proof follows arguing as in the case I(u).

3. Proof of Theorem 1.2

We need some lemmas:

Lemma 3.1. Assume that f satisfies the conditions (f1)-(f3). Then
there exist a0 > 0, b0 ∈ R such that

f(x, u) ≥ a0|u|p − b0, ∀x, u. (3.1)

Proof. Let u be such that |u|2 ≥ R2. Let us set ϕ(ξ) = f(x, ξu) for
ξ ≥ 1. Then

ϕ(ξ)′ = u · fu(x, ξu) ≥ µ

ξ
ϕ(ξ).

Multiplying by ξ−p, we get

(ξ−pϕ(ξ))′ ≥ 0,

hence ϕ(ξ) ≥ ϕ(1)ξp for ξ ≥ 1. Thus we have

f(x, u) ≥ f
(
x,

R|u|√
|u|2

)(√
|u|2
R

)p ≥ c0

(√
|u|2
R

)p

≥ a0|u|p − b0, for some a0, b0,

where c0 = inf{f(x, u)| |u|2 = R2}.
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Lemma 3.2. Assume that f satisfies the conditions (f1)-(f3). Then
if ‖un‖ → +∞ and

∫
Ω

un · fu(x, un)dx− 2
∫
Ω

f(x, un)dx

‖un‖ → 0,

then there exist (uhn)n and w ∈ H such that

grad(
∫
Ω

f(x, uhn)dx)

‖uhn‖
→ w and

uhn

‖uhn‖
⇀ 0.

Proof. By (f2) and Lemma 3.1, for u ∈ H,
∫

Ω

[u · fu(x, u)]dx− 2

∫

Ω

f(x, u)dx ≥

(p− 2)

∫

Ω

f(x, u)dx ≥ (p− 2)(a0‖u‖p
Lp − b1).

By (f3),

‖grad(

∫

Ω

f(x, u)dx)‖ ≤ C ′‖|u|ν‖L2∗′

for suitable constant C ′. To get the conclusion it suffices to estimate

‖ |u|ν‖u‖‖L2∗′ in terms of
‖u‖p

Lp

‖u‖ . If p ≥ 2∗′ν, then this is an consequence

of Hölder inequality. Next we consider the case p < 2∗′ν. By the
assumptions p and ν,

ν ≤ 2∗ − 1− (2∗ − p)(1− 2∗′

2∗
). (3.2)

By the standard interpolation arguments, it follows that ‖ |u|ν‖u‖‖L2∗′ ≤
C

(‖u‖p
Lp

‖u‖
) να

p ‖u‖β, where α is such that α
p

+ 1−α
2∗ = 1

2∗′ν (α > 0) and

β = (1− α)ν − 1− να
p

. By (3.2), β ≤ 0. Thus we prove the lemma.

By (f3), the functional I(u) is well-defined and continuous on H.

Proposition 3.1. Assume that the conditions (f1)-(f3) hold. Then
the functional J(u) is continuous, Fréchet differentiable in H with Fréch−
et derivative

∇J(u)v =

∫

Ω

[(Lu) · v − fu(x, u) · v]dx.

Moreover ∇J ∈ C. That is J ∈ C1.
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Proof. First we shall prove that J(u) is continuous at u. For u, v ∈ H,

|J(u + v)− J(u)|

= |1
2

∫

Ω

(Lu + Lv) · (u + v)dx−
∫

Ω

f(x, u + v)dx

− 1

2

∫

Ω

(Lu) · udx +

∫

Ω

f(x, u)dx|

= |1
2

∫

Ω

[(Lu · v + Lv · u + Lv · v)dx−
∫

Ω

(f(x, u + v)− f(x, u))dx|.

Since f ∈ C1(Ω̄×H,R), we have

|
∫

Ω

[f(x, u+v)−f(x, u)]dx| ≤ |
∫

Ω

[fu(x, u)·v+o(|v|)]dx| = O(|v|). (3.3)

Thus we have

|J(u + v)− J(u)| = O(|v|2),
So J(u) is continuous at u in H. Next we shall prove that J(u) is Fréchet
differentiable in H. For u, v ∈ H,

|J(u + v)− J(u)−∇J(u)v|

= |1
2

∫

Ω

(Lu + Lv) · (u + v)dx−
∫

Ω

f(x, u + v)dx

− 1

2

∫

Ω

(Lu) · udx +

∫

Ω

f(x, u)dx−
∫

Ω

(Lu− fu(x, u)) · vdx|

= |1
2

∫

Ω

[Lu · v + Lv · u + Lv · v]dx

−
∫

Ω

[f(x, u + v)− f(x, u)]dx−
∫

Ω

[(Lu− fu(x, u)) · v]dx|.

By (3.3), we have

|J(u + v)− J(u)−∇J(u)v| = O(|v|2).
Similarly, it is easily checked that J ∈ C1.

Proof of Theorem 1.2
From now on we shall prove that J satisfies Palais-Smale condition under
the assumptions (f1)-(f3). Assume that the (f1)-(f3) hold. Let c ∈ R
and (un)n be a sequence in H such that

J(un) → c, ∇J(un) → 0.
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We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then

〈∇J(un), ûn〉 = 2
J(un)

‖un‖ −∫
Ω

fu(x, un) · undx− 2
∫
Ω

f(x, un)dx

‖un‖ −→ 0.

Hence ∫
Ω

fu(x, un) · undx− 2
∫
Ω

f(x, un)dx

‖un‖ −→ 0.

By Lemma 3.2,

grad
∫
Ω

f(x, un)dx

‖un‖ converges

and ûn ⇀ 0. We get

∇J(un)

‖un‖ = Lûn −
grad(

∫
Ω

f(x, un)dx)

‖un‖ −→ 0,

so Lûn converges. Since (ûn)n is bounded and the operator of L−1 is a
compact mapping, up to subsequence, (ûn)n has a limit. Since ûn ⇀ 0,
we get ûn → 0, which is a contradiction to the fact that ‖ûn‖ = 1.
Thus (un)n is bounded. We can now suppose that un ⇀ u for some u ∈
H. Since the mapping u 7→ grad(

∫
Ω

f(x, u)dx) is a compact mapping,
grad(

∫
Ω

f(x, un)dx) −→ grad(
∫

Ω
f(x, u)dx). Thus Lun converges. Since

the operator of L−1 is a compact operator and (un)n is bounded, we
deduce that, up to a subsequence, (un)n converges to some u strongly
with ∇J(u) = lim∇J(un) = 0. Thus we prove the lemma.
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