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PALAIS-SMALE CONDITION FOR THE STRONGLY
DEFINITE FUNCTIONAL

TACKSUN JUNG AND Q-HEUNG CHOT*

ABSTRACT. Let €2 be a bounded subset of R™ with smooth boundary
and H be a Sobolev space Wol’Q(Q). Let I € CY! be a strongly
definite functional defined on a Hilbert space H. We investigate
the conditions on which the functional I satisfies the Palais-Smale
condition. Palais-Smale condition is important for determining the
critical points for I by applying the critical point theory.

1. Introduction

Let © be a bounded subset of R™ with smooth boundary. Let L be
an elliptic linear differential operator defined by

0? 0?
L= 42
02 * +8:1:%

Let H be a Sobolev space W, () with the norm

llu|| = [/ Lu - udz]z.
Q

Let I be a strongly definite functional defined on H which is of the form

I(u) = /Q[%Lu cu — b(x,u(x))|dr,

where b(x,u(r)) € CY2 x H,R) is a given function. In this paper
we investigate the conditions on which the functional I satisfies the
Palais-Smale condition. We say that the functional I satisfies the Palais-
Smale condition if for any given number ¢ € R, the sequence (u,,), in
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H with I(u,) — ¢ and VI(u,) — 0 possesses a convergent subsequence.
Whether I satisfies the Palais-Smale condition or not is important for
determining the critical points for I by applying the critical point theory.
Our main results are as follows:
THEOREM 1.1. Let g(x,u) = v, h(z,u) = u”, with 2 < p < 2%,

2" = 2% n > 3, where uy = max{u,0} and u_ — —min{w,0}. Then

the functionals

I(u) = /Q[%Lu cu — g(x,u)]de

and
K(u) = /Q[%Lu ~u — h(x,u)ldr

satisfy the Palais-Smale condition.

THEOREM 1.2. Assume that f € C'(Q2 x R, R) satisfies the following
growth conditions:
(f1) f(x,0) =0, f(x,u) >0 ifu+#0, inf|u|z2€fzn2 f(z,u) >0,
(f2) u- fu(xau) > pf(x>u> vwa u,
(f3) [fulz, u)| < 7ylul”, Y, u,
WhereC’>0,2<p<2*,2*:%,nZS,’yEO,uE]&Z*[,uS
2* —1— (2" —p)(1—2).
Then the functional

I = [ [5(L0) -u = fla,u(o))ds (1.2)

satisfies the Palais-Smale condition.

In section 2 we obtain some results and properties of the linear oper-
ator L, and the function f. In section 2 we obtain some result on the
corresponding functional I(u) and prove Theorem 1.1. In section 3 we
obtain some results and properties of the function f and the correspond-
ing functional J(u), and prove Theorem 1.2.

REMARK 1.1.  We note that the function a(z,u) = |u|P, with 2 <
p < 2* and Q bounded subset of R", satisfies the conditions (f1)-(f3).
Then the functional on H

Au) = /Q[%Luu — f(z,u)]dz

satisfies the Palais-Smale condition.
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REMARK 1.2. Let uy = max{u,0} and u_ = —min{u,0}. Although
the functions g(z,u) = u’, h(z,u) = u”, with2 < p < 2* and Q bounded
subset of R", do not satisfy the conditions (f2), the functionals

I(u) = /Q[%Lu cu— g(x,u)]dr

and
K(u) = /Q[%Lu cu — h(z,u)|de

satisfy the Palais-Smale condition.

2. Proof of Theorem 1.1

First we shall prove that the functional

I(u):/[lLu-u—uﬁ)]d:p, 2<p<2t 2" = 2n , n>3.

Q2 n—2

satisfy the Palais-Smale condition. The eigenvalue problem —Lu = A\u
in Q, u = 0 on JN has infinitely many eigenvalues \g, & > 1 with
Al < A < ..o < A\ < ..., and infinitely many eigenfunctions ¢ be
the eigenfunction belonging to the eigenvalue Ay, £ > 1. We need the
following proposition for applying the critical point theory:

PROPOSITION 2.1. The functional I(u) is continuous, Fréchet differ-
entiable in H, with Fréchet derivative

Vi(u)v = /[Lu v —pul ' v)dr,
Q

Moreover VI € C. That is I € C.

Proof. First we prove that I(u) is continuous at u. For u, v € H,
[ (u+v)—I(u)]

_ %/Q(LUJFLU).(u+v)d.r—/ﬂ(u+v)id$_%/

Lu-udx+/uﬂdx|
0 Q

1
= Q/Q(Lum—i-qu%—Lv'v)dx—/Q(u—kv)idx—uﬁ)dad.

Let u="> hydn, v =" kno,. Then we have
| D vdal = | 30 Aol < [l - el
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[ Lo udsl =1 Y Akl < [l - ol
Q

|/Lv~vdm| = |Z)\nknkn| < |lv|%,
Q

from which we have
1
|§ /(Lu v+ Lv-u+ Lo -v)dz|] < ||lu|| - ||v| + ||v||2 (2.1)
Q

On the other hand
|(u+v) P = [up?] < Crluf o] + Ra(Jus], |vy])
and hence we have
IA(I(U+U)+I2—|U+I2)dw| < 2juy || 2@ llvll 2@+ vl 22y < 2llull-loll+v]?,
(2.2)

|/Q(!(U+U)+|p—\u+|p)d93| < Cillu 2o vl e+ Re(lull 2y, 0]l 2@)

< Collu M l[|v]| + Ro(Jfell, 0] (2.3)
Combining (2.1) with (2.2) and (2.3), we have

1I(u+v) — I(w)] = o(||v]|?)

from which we can conclude that I(u) is continuous at u. Next we prove
that I(u) is Fréchet differentiable in H. For u,v € H,

[I(u+v)—I(u) — VI(u)v|

:\%/Q(Lu—ier)-(u+v)d:v—/g(u—|—v)ﬂdx

— %/Q(Lu) -udx + /Quﬂdx — /Q(Lu — pu ) - vdz|
_ /Q[%(LU) v — (w4 )+ P+ pul0)dal.
Combining (2.1) with (2.2) and (2.3), we have that
[I(u+v) — I(u) — VI(u)v| = O(||Jv]]?). (2.4)

Thus I(u) is Fréchet differentiable in H. Similarly, it is easily checked
that I € C. O
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Proof of Theorem 1.1

Let ¢ € R and (u,), be a sequence such that
u, € H, ¥Yn, I(u,) — ¢, VI(u,) — 0.
We claim that (u,), is bounded. By contradiction we suppose that

||un|| — +o0 and set u,, = ”ZZ”. Then we have

~ 2[("&”) fQ p(un)g—il ' undx
(VI(up),tn) = —
)= Tl Tl

2 Jo(un)t dx
[[2n]|
Hence
Jolp(ua)5t - wy — 2(u,)? ) d
||

Thus there exists a constant M > 0 such that

— 0.

M| /Q Pl ) = 2(u, )] de]
2| [ )" = 2w
> [ )2l = 2102 o
> [ a2 1)l = 22
_ /Q[|p(un)i| — 2| (up )% || da

= (0=2) [ (w)+de = (0= D) oo

Thus
o alp(un) " = 2(u))lde
]
)4 12

v

—2)

[
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Since p > 2,
1(tn)+ 1700
——————~  converges .
[[n |

On the other hand
Ip(un)i | < Chll(un Vi 1HL2* @

for suitable constant C;. Then we have

p—1 ()pl

Py oy

[ |

Ifp> 2*/ (p—1), then by the Hdlder's inequality, it is easily checked that

(un)
I IIUnH ||L2* )

||L2*
len

P
can be estimated in terms of M If p <29 (p —
[[un]]

p—1
1), then by the standard interpolation inequalities, ||%|| (g S
. ( '
C Mun) Mo ) 25 un)+||? for some constant Cy, where o > 0 is such
||Un||

that £ + ’azz*, andﬁ:(l—a)(p—l)—l—@. Since p—1 <

2*
2 —1— (2" —p)(1 — %), B < 0. Thus we have

p(un)t

H(un)Jr”Izp(Q) (p—Do

IR < G ) ((un) 4]l
[[ttn]| [[ttn]|
for a constant C5. Since H(miﬂ”p converges and 3 < 0,
p—1
% converges. (2.5)
Unp,

By (2.5) and the boundedness of i,

<p(un)’f1

,Uy) converges.
[

Thus by (2.5), we have
P [
Q

[ N
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Thus u, — 0. We get

p—1

[[an]| [[n|
By (2.5), Lu, converges. Since (i), is bounded and the operator of
L~ is a compact mapping, up to subsequence, (1, ), has a limit. Since
U, — 0, we get u, — 0, which is a contradiction to the fact that ||u,|| =
1. Thus (u,), is bounded. We can now suppose that u,, — u for some
u € H. We claim that u,, — u strongly. We have that

(VI (1), 1) = (s — / [Pt g ) — 0.

= Lu, — — 0.

Since [, [p(un)t” Yy |de — Jolpu”™ Yu)dz, ||un|® converge. Thus (uy,)n
converges to some u strongly with VI(u) = lim VI(u,) = 0. Thus we
prove the lemma.

For the case K (u), the proof follows arguing as in the case I(u).

3. Proof of Theorem 1.2

We need some lemmas:

LEMMA 3.1. Assume that f satisfies the conditions (f1)-(f3). Then
there exist ag > 0, by € R such that

flz,u) > aplul’ — by, YV, u. (3.1)

Proof. Let u be such that |u|?> > R?. Let us set p(¢) = f(x,&u) for
¢ > 1. Then

p(&) =u- fulz,&u) >
Multiplying by £7P, we get

©(£).

M=

(£70(8) =0,
hence p(§) > p(1)&P for £ > 1. Thus we have
Rlu| \ /[ul?\p |ul\p
)(G5)" = ol=5—)
ViuP’ R
> ap|ul? — by, for some ag, by,
where c¢g = inf{f(z,u)| |u|* = R*}. O

f(w7u) > f(xv
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LEMMA 3.2. Assume that f satisfies the conditions (f1)-(f3). Then
if ||uy,|| — 400 and

fQ Up, fu(xa un)dx - 2fQ f(l',un)dl’

— 0,
[[un
then there exist (up, ), and w € H such that
d d
gra (fQ f(‘r7uhn) x) Sw and uhn N 0

[[un, | [[en, |

Proof. By (f2) and Lemma 3.1, for u € H,

[t puwatas =2 [ fGo i >

=2 [ s> (- Daolull, - 00
By (£3),
levad( | (o, uda)]| < €'l

for suitable constant C’. To get the conclusion it suffices to estimate

|ul” : [l
||||uTH||L2*’ in terms of “ &~

of Holder inequality. Next we consider the case p < 2*'v. By the
assumptions p and v,

If p > 2*v, then this is an consequence

2*/

VSZ*—l—(2*—p)(1—§). (3.2)
By the standard interpolation arguments, it follows that ||%|| 2 S
C’(”ﬂ%p)%ﬂuﬂﬁ, where « is such that % + 22 = - (o > 0) and

f=(1-ay—1-=1 By (3.2), 8 <0. Thus we prove the lemma. []

By (3), the functional I(u) is well-defined and continuous on H.

PROPOSITION 3.1. Assume that the conditions (f1)-(f3) hold. Then
the functional J(u) is continuous, Fréchet differentiable in H with Fréch—
et derivative

VJ(u)v = /Q[(Lu) v — fulx,u) - vlde.

Moreover VJ € C. That is J € C'.
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Proof. First we shall prove that J(u) is continuous at u. For u,v € H,

|J(u+v) = J(u)]

:|%/Q(Lu+Lv)-(u+v)dm—/ﬂf(x,u+v)dm
_%/Q(Lu)-udﬂ/gf(x,u)dxy

= I%/Q[(Lu-wm-u+Lv-v>d$—/(f(x,u+v)—f(w)>d$|-

Q
Since f € C1(Q x H, R), we have

| / (s uto)— f (o, w)de]| < | / fulr,w)-vro(fo])dz] = O(o]). (3:3)
Thus we have
T+ v) — I(w)] = O(uP),

So J(u) is continuous at v in H. Next we shall prove that J(u) is F'réchet
differentiable in H. For u,v € H,

|J(u+v) = J(u) = VJ(u)v|
= %/Q(LquLv)-(u+v)dx—/gf(iv,u4rv)dﬂf

1
_§/Q(Lu)’udx-ir/ﬂf(xuu)dx_/Q<LU—fu($au))'Ud$|

1
= 5/[Lu-v+Lv-u+Lv-v]da:
Q

- / @, utv) — flz,uw)lde — / (Lt~ fuar,w) - vda].

Q
By (3.3), we have
|J(u+v) — J(u) — VJ(u)v| = O(jv]?).
Similarly, it is easily checked that J € C!. O

Proof of Theorem 1.2
From now on we shall prove that J satisfies Palais-Smale condition under
the assumptions (f1)-(f3). Assume that the (f1)-(f3) hold. Let ¢ € R
and (u,), be a sequence in H such that

J(u,) — ¢, VJ(u,)— 0.
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We claim that (u,), is bounded. By contradiction we suppose that
|un]| — +o0 and set u, = 22-. Then

llunll”
R J(un
(VT (1) 10y) = 2ﬁ_
Jo fu(@, uy) - updx — 2 [, f(x, uy)da o
[t |
Hence
fQ fulz, uy) - updr — QfQ f(x,u,)dz o
[[ttn]|
By Lemma 3.2,
d , U )d
grad Jo f (@, un)d converges
[[an]|
and u,, — 0. We get
VJ(un) Li grad( [, f(x, u,)dzx) 0,

[ ! ]

so L, converges. Since (1), is bounded and the operator of L™! is a
compact mapping, up to subsequence, (i), has a limit. Since u,, — 0,
we get u, — 0, which is a contradiction to the fact that |[«,| = 1.
Thus (uy,), is bounded. We can now suppose that u,, — u for some u €
H. Since the mapping u — grad( [, f(x,u)dz) is a compact mapping,
grad( [, f(z,u,)dz) — grad( [, f(x,u)dz). Thus Lu, converges. Since
the operator of L' is a compact operator and (u,), is bounded, we
deduce that, up to a subsequence, (u,), converges to some u strongly
with VJ(u) = lim VJ(u,) = 0. Thus we prove the lemma.
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