Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.1.24

Understanding DFT Calculations of Weak Interactions: Density-Corrected Density Functional Theory  

Park, Hansol (Department of Chemistry, Yonsei University)
Kim, Yeil (Department of Chemistry, Yonsei University)
Sim, Eunji (Department of Chemistry, Yonsei University)
Publication Information
Abstract
In this work, we discuss where the failure of Kohn-Sham Density Functional Theory (DFT) occurs in weak interactions. We have adopted density-corrected density functional calculations and dispersion correction separately to find out whether the failure is due to density-driven error or functional error. The results of Benzene Ar complex, one of the most common examples of van der Waals interactions, show that DFT calculations of van der Waals interaction suffer from functional error, rather than density-driven error. In addition, errors in DFT calculations of the S22 dataset, which contains small to relatively large (30 atoms) complexes with non-covalent interactions, are governed by functional errors.
Keywords
Density functional theory; Error in semilocal density functionals; Non-covalent binding energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.   DOI
2 Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.   DOI
3 Hobza, P.; Reschel, T. J. Comp. Chem. 1995, 16, 1315.   DOI
4 Perez-Jorda, J. M.; Becke, A. D. Chem. Phys. Lett. 1995, 233, 134.   DOI
5 Perez-Jorda, J. M.; San-Fabian, E.; Perez-Jimenez, A. J. J. Chem. Phys. 1999, 110, 1916.   DOI
6 Stone, A. J. The Theory of Intermolecular Forces, Oxford University Press: Oxford, U. K., 1997.
7 Kaplan, I. G. Intermolecular Interactions, John Wiley & Sons: Chichester, U. K., 2006.
8 Grimme, S.; Antony, J.; Schwabe, T.; Muck-Lichtenfeld, C. Org. Biomol. Chem. 2007, 5, 741.   DOI
9 Kim, M.; Sim, E.; Burke, K. Phys. Rev. Lett., 2013, 111, 073003.   DOI
10 Kim, M.; Sim, E.; Burke, K. J. Chem. Phys. 2014, 140, 18A528   DOI
11 Sim, E.; Kim, M.; Burke, K. AIP Conference Proceedings, 2015, 1702, 090036.
12 Grimme, S.; Antony, H.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.   DOI
13 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.   DOI
14 Kim, M.; Park, H.; Son, S.; Sim, E.; Burke, K. J. Phys. Chem. Lett. 2015, 6, 3802.   DOI
15 Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Science, 2008, 321, 5890, 792.   DOI
16 Song, S.; Kim, M.; Sim, E.; Benali, A.; Heinonen, O. and Burke, K. J. Chem. Theory Comput. 2018, 14, 2304.   DOI
17 Sim, E.; Song, S.; Burke, K. J. Phys. Chem. Lett. 2018, 9, 6385.   DOI
18 Grimme, S. J. Comput. Chem. 2006, 27, 1787.   DOI
19 Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. Phys. Chem. Chem. Phys. 2017, 19, 32184.   DOI
20 Grimme, S. J. Comput. Chem. 2004, 25, 1463.   DOI
21 Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454.   DOI
22 Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180.   DOI
23 Tozer, D. J.; Amos, R. D.; Handy, N. C.; Roos, B. O.; Serrano-Andres, L. Mol. Phys. 1999, 97, 859.   DOI
24 Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys. 2003, 119, 2943.   DOI
25 Bernasconi, L.; Sprik, M.; Hutter, J. J. Chem. Phys. 2003, 119, 12417.   DOI
26 Tawada, Y.; Tsuneda, T.; Yangisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120, 8425.   DOI
27 Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540.   DOI
28 Seminario, J. M. Recent Developments and Applications of Modern Density Functional Theory, Elsevier: Amsterdam, Netherlands, 1996.
29 Gill, P. M. W.; Adamson, R. D.; Pople, J. A. Mol. Phys. 1996, 88, 1005.   DOI
30 Leiniger, T.; Stoll, H.; Werner, H.-J.; Savin, A. Chem. Phys. Lett. 1997, 275, 151.   DOI
31 Jurecka, P.; S?poner, J.; Cerny, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.   DOI
32 Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 77, 3865.   DOI
33 Weber, Th.; Riedle, E.; Neusser, H. J.; Schlag, E. W. Chem. Phys. Lett. 1991, 183, 77.   DOI
34 Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 3.   DOI
35 Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.   DOI
36 Weber, Th.; von Bargen, A.; Riedle, E.; Neusser, H. J. J. Chem. Phys. 1990, 92, 90.   DOI
37 Takatani, T.; Hohenstein, E. G.; Malagoli, M.; Marshall, M. S.; Sherrill, C. D. J. Chem. Phys. 2010, 132, 144104.   DOI
38 Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem. Phys. Lett. 1989, 162, 165.   DOI
39 TURBOMOLE V7.0 2015, A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
40 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A. Gaussian 16 Revision A. 03. 2016, Gaussian Inc., Wallingford, U.S.A., 2016.