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PERIODIC SOLUTIONS FOR THE NONLINEAR

HAMILTONIAN SYSTEMS

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of nonconstant periodic solution
for the nonlinear Hamiltonian systems with some nonlinearity. We
approach the variational method. We use the critical point theory
and the variational linking theory for strongly indefinite functional.

1. Introduction

Let L2(S1, R2n) denote the set of 2n-tuples of the square integrable
2π periodic functions and choose z ∈ L2(S1, R2n). Let H : R2n →
R ∈ C1 with H(0, . . . , 0) = 0 and Hz be its gradient. In this paper
we investigate the existence of the nonconstant periodic solution of the
nonlinear Hamiltonian system

ż = J(Hz(z)), (1.1)

where z ∈ L2(S1, R2n), ż = dz
dt

, J =

(
0 −In

In 0

)
, In is the n di-

mensional identity matrix. Let a · b and | · | denote the usual inner
product and norm on R2n. Let us set z = (p, q), p = (z1, · · · , zn),
q = (zn+1, · · · , z2n) ∈ Rn. Then (1.1) can be rewritten as

ṗ = −Hq(p, q),

q̇ = Hp(p, q).
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We assume that H satisfies the following conditions:
(H1) H ∈ C1(R2n, R) with H(0, . . . , 0) = 0,
(H2) H > 0 for z 6= (0, . . . , 0)

(H3) limz→(0,...,0)
Hzi (z)

|z| = 0,

(H4) lim|z|→∞
Hzi (z)

|z| = ∞,

(H5) z ·Hz(z) ≥ µH(z), ∀z, µ > 2,
(H6) |Hz1(z)|+ . . . + |Hz2n(z)| ≤ γ(|z1|ν + . . . + |z2n|ν), ∀z, γ > 0, ν > 1,
i = 1, . . . , 2n.

Let E = W
1
2
,2(S1, R2n). We are looking for 2π periodic weak solutions

for (1.1). We observe that the 2π periodic weak solutions of (1.1) coincide
with the critical points of the corresponding functional

I : E → R ∈ C1,

I(u) =
1

2

∫ 2π

0

ż · Jzdt−
∫ 2π

0

H(z(t))dt. (1.2)

In other words, 2π-periodic weak solution of (1.1) is any z = (p, q) ∈ E
such that
∫ 2π

0

[(ṗ+Hq(t, z(t)))·ψ−(q̇−Hp(t, z(t)))·φ]dt = 0 for all ζ = (φ, ψ) ∈ E,

and coincide with the critical points of the corresponding functional

I(z) =

∫ 2π

0

pq̇dt−
∫ 2π

0

H(z(t))dt = A(z)−
∫ 2π

0

H(z(t))dt, (1.3)

where A(z) = 1
2

∫ 2π

0
ż · Jzdt.

Our main result is the following:

Theorem 1.1. Assume that H satisfies the conditions (H1)-(H6).
Then (1.1) has at least one nonconstant 2π periodic solution. Moreover,
if H is of class Ck, this solution is of class Ck(S1, R2n).

The outline of the proof is the following: In section 2, we investigate
the properties of the nnlinear term H and the functional I. In section
3, we recall a variational linking theorem and prove that the functional
I satisfies the linking geometry. In section 4, prove Theorem 1.1.
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2. Properties of the nonlinear term H and the functional I

Let E = W
1
2
,2(S1, R2n). The scalar product in L2 extends as the

duality pairing between E and E ′ = W− 1
2
,2(S1, R2n). We know that if

z ∈ L2(S1, R2n), then it has a Fourier expansion z(t) =
∑k=+∞

k=−∞ ake
ikt,

with ak ∈ C2n, a−k = āk and
∑

k∈Z |ak|2 < ∞. Then E is the closure of
such functions with respect to the norm

‖z‖ = (
∑

k∈Z

(1 + |k|)|ak|2) 1
2 .

Let e1, · · · , e2n denote the usual bases in R2n and set

E0 = span{e1, · · · , e2n},

E+ = span{(sin jt)ek − (cos jt)ek+n, (cos jt)ek+(sin jt)ek+n,

| j ∈ N, 1 ≤ k ≤ n},
E− = span{(sin jt)ek + (cos jt)ek+n, (cos jt)ek−(sin jt)ek+n

| j ∈ N, 1 ≤ k ≤ n}.
Then E = E0 ⊕ E+ ⊕ E− and E0, E+, E− are the subspaces of E on

which A is null, positive definite and negative definite, and these spaces
are orthogonal with respective to the bilinear form

B[z, ζ] ≡
∫ 2π

0

p · ψ̇ + φ · q̇dt

associated with A. Here z = (p, q) and ζ = (φ, ψ). If z ∈ E+ and ζ ∈ E−,
then the bilinear form is zero and A(z + ζ) = A(z)+A(ζ). We also note
that E0, E+ and E− are mutually orthogonal in L2(S1, R2n). Let P+ be
the projection from E onto E+ and P− the one from E onto E−. Then
the norm in E is given by

‖z‖2 = |z0|2 + A(z+)− A(z−) = |z0|2 + ‖P+z‖2 + ‖P−z‖2

which is equivalent to the usual one. The space E with this norm is a
Hilbert space.
We need the following facts which is proved in [5]:

Proposition 1. For each s ∈ [1,∞), E is compactly embedded in
Ls(S1, R2n). In particular, there is an αs > 0 such that

‖z‖Ls ≤ αs‖z‖
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for all z ∈ E.

By (H3) and (H5), we obtain the lower bound for H(z) in the term
of |z1|µ + . . . + |z2n|µ.

Lemma 2.1. Assume that H satisfies the conditions (H1) − (H5).
Then there exist a0, b0 ∈ R with a0 > 0 such that

H(z) ≥ a0(|z|µ)− b0, ∀z ∈ E. (2.1)

Proof. Let z ∈ E be such that |z|2 ≥ R2. Let us set ϕ(ξ) = H(ξz) for
ξ ≥ 1. Then

ϕ(ξ)′ = z ·Hz(ξz) ≥ µ

ξ
ϕ(ξ).

Multiplying by ξ−µ, we get

(ξ−µϕ(ξ))′ ≥ 0,

hence ϕ(ξ) ≥ ϕ(1)ξµ for ξ ≥ 1. Thus we have

H(z) ≥ H
( R|z|√

|z|2
)(√

|z|2
R

)µ

≥ c0

(√
|z|2
R

)µ ≥ a0(|z|µ)− b0, for some a0, b0,

where c0 = inf{H(z)| |z|2 = R2}.
Lemma 2.2. Assume that H satisfies the conditions (H1) − (H6).

Then
(i)

∫ 2π

0
H(0, . . . , 0)dt = 0,

∫ 2π

0
H(z)dt > 0 if z(t) 6= (0, . . . , 0),

grad(
∫ 2π

0
H(z))dt = o(‖z‖) as z → (0, . . . , 0);

(ii) z → grad(
∫ 2π

0
H(z(t))dt is a compact map;

(iii) if
∫ 2π

0
z ·Hz(z)dt− 2

∫ 2π

0
H(z(t))dt = 0, then

grad(
∫ 2π

0
H(z)dt) = 0;

(iv) if ‖zn‖ → +∞ and∫ 2π
0 zn·Hz(zn)dt−2

∫ 2π
0 H(zn)dt

‖z‖ → 0,

then there exists (zhn)n and w ∈ E such that

grad(
∫ 2π

0
H(zn)dt)

‖zhn‖
→ w and

zhn

‖zhn‖
⇀ (0, . . . , 0).
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Proof. (i) (i) follows from (H1), (H2) and (H6), since 1 < ν.
(ii) (ii) is easily obtained with standard arguments.
(iii) (iii) is implied by (H5) and the fact that H(z) > 0 for z 6= (0, . . . , 0).
(iv) By Lemma 2.1 and (H5), for z ∈ E,

∫ 2π

0

z ·Hz(z)dt− 2

∫ 2π

0

H(z)dt ≥

(µ− 2)

∫ 2π

0

H(z)dt ≥ (µ− 2)(a0‖z‖µ
Lµ − b1).

By (H6),

‖grad(

∫ 2π

0

H(z)dt)‖ ≤ C ′‖Hz(z)‖Lr ≤ C ′′‖|z|ν‖Lr , for some 1 < r < 2

and suitable constants C ′, C ′′. To get the conclusion it suffices to esti-

mate ‖ |z|ν‖z‖‖Lr in terms of
‖z‖µ

Lµ

‖Z‖ . If µ ≥ rν, then this is an consequence of

Hölder inequality. If µ < rν, by the standard interpolation arguments,

it follows that ‖ |z|ν‖z‖‖Lr ≤ C
(‖z‖µ

Lµ

‖z‖
) ν

µ‖z‖l, where l is such that l = −1+ ν
µ
.

Thus we prove (iv).

Proposition 2. Assume that H(z) ∈ C1(R2n, R). Then I(z) is C1,
that is, I(z) is continuous and Fréchet differentiable in E with Fréchet
derivative

DI(z)ω =

∫ 2π

0

(ż − J(Hz(z))) · Jω

=

∫ 2π

0

[(ṗ + Hq(z)) · ψ − (q̇ −Hp(z)) · φ]dt,

where z = (p, q) and ω = (φ, ψ) ∈ E. Moreover the functional z 7→∫ 2π

0
H(z(t))dt is C1.
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Proof. For z, w ∈ E,

|I(z + w)− I(z)−DI(z)w|

= |1
2

∫ 2π

0

(ż + ẇ) · J(z + w)−
∫ 2π

0

H(z + w)

−1

2

∫ 2π

0

ż · Jz +

∫ 2π

0

H(z)−
∫ 2π

0

(ż − J(Hz(z))) · Jw|

= |1
2

∫ 2π

0

[ż · Jw + ẇ · Jz + ẇ · Jw]

−
∫ 2π

0

[H(z + w)−H(z)]−
∫ 2π

0

[ż − J(Hz(z)) · Jw]|.

We have

|
∫ 2π

0

[H(z + w)−H(z)]| ≤ |
∫ 2π

0

[Hz(z) · w + o(|w|)]dt| = O(|w|).

Thus we have

|I(z + w)− I(z)−DI(z)w| = O(|w|2).
Next we prove that I(z) is continuous. For z, w ∈ E,

| I (z + w)− I(z)|

= |1
2

∫ 2π

0

(ż + ẇ) · J(z + w)−
∫ 2π

0

H(z + w)

−1

2

∫ 2π

0

ż · Jz +

∫ 2π

0

H(z)|

= |1
2

∫ 2π

0

[ż · Jw + ẇ · Jz + ẇ · Jw]−
∫ 2π

0

[H(z + w)−H(z)]|
= O(|w|).

Similarly, it is easily checked that I is C1.

3. Linking geometry

We recall the variational linking theorem for strongly indefinite func-
tional (cf. [5]) which is a crucial role for proving the existence of the
nonconstant 2π periodic weak solution of (1.1).
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Lemma 3.1. (Variational Linking Theorem)
Let E be a real Hilbert space with E = E1 ⊕ E2 and E2 = E⊥

1 . We
suppose that
(I1) I ∈ C1(E, R), satisfies (P.S.) condition, and
(I2) I(u) = 1

2
(Lu, u) + bu, where Lu = L1P1u + L2P2u and Li : Ei → Ei

is bounded and selfadjoint, i = 1, 2,
(I3) b′ is compact, and
(I4) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, T ⊂ Ẽ and constants
α > w such that,

(i) S ⊂ E1 and I|S ≥ α,
(ii) T is bounded and I|∂T ≤ w,
(iii) S and ∂T link.

Then I possesses a critical value c ≥ α.

Let (En)n be a sequence of closed subspaces of E with the conditions:

En = E−
n ⊕ E0 ⊕ E+

n , where E+
n ⊂ E+, E−

n ⊂ E− for all n, (3.1)

(E+
n and E−

n are subspaces of E), dim En < +∞, En ⊂ En+1,∪n∈NEn

is dense in E. Let PEn be the orthogonal projections from E onto En.

Let us prove that the functional I satisfies the linking geometry.

Lemma 3.2. Assume that H satisfies the conditions (H1)-(H6). Then
(i) there exist a small number ρ > 0 and a small ball Bρ ⊂ E0 ⊕ E+

with radius ρ such that if U ∈ ∂Bρ, then

α = inf I(z) > 0,

(ii) there is an e ∈ E0 ⊕ E+ and R > ρ such that if

W = (B̄R ∩ (E0 ⊕ E−))⊕ {re| 0 < r < R}
and z ∈ ∂W , then

sup
z∈∂W

I(z) ≤ 0

and β = supW I(z) < ∞.

Proof. (i) We note that

if z ∈ E+, then

∫ 2π

0

ż · Jzdt ≥ τ1,

if z ∈ E−, then

∫ 2π

0

ż · Jzdt ≤ −τ2
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for some τ1 > 0, τ2 > 0. By (H5) and (H6), |H(z)| ≤ a|z|b for some
a > 0 and b > 2. If z ∈ E0 ⊕ E+, then we have

I(z) =
1

2

∫ 2π

0

ż · Jzdt−
∫ 2π

0

H(z)dt

≥ τ1 − a‖z‖b
L2 .

Since b > 2, there there exist a small number ρ > 0 and a small ball Bρ

with radius ρ such that if z ∈ ∂Bρ, then α = inf I(z) > 0. Thus the
assertion (1) hold.
(ii) By Lemma 2.1, there exist a0, b0 ∈ R, a0 > 0 such that H(z) ≥
a0|z|µ − b0, ∀z ∈ E. Let us choose an element e ∈ B1 ⊂ E+ with
‖e‖ = 1 and z 6= (0, . . . , 0) ∈ E0 ⊕ E− ⊕ {re| 0 < r}. Then z = w + re,
w ∈ E0 ⊕ E−, w 6= (0, . . . , 0). Then we have

I(z) =
1

2

∫ 2π

0

ẇJw − 1

2

∫ 2π

0

ṙeJ(re)−
∫ 2π

0

H(w + re)dt

≤ −τ2 +
1

2
r2 − a0r

µ − a0‖w‖µ − b0

for some a0 > 0, a0, b0 ∈ R. Since µ > 2 and w ∈ E0 ⊕E−, there exists
R > 0 such that if

W = (B̄R ∩ (E0 ⊕ E−))⊕ {re| 0 < r < R}
and z ∈ ∂W , then supz∈∂W I(z) < 0. Moreover supW I(z) < 1

2
r2 < ∞.

Thus the assertion (ii) hold. So the lemma is proved.

We shall prove that the functional I satisfies the (P.S.)∗c condition for
any c ∈ R.

Lemma 3.3. Assume that H satisfies the conditions (H1)-(H6). Then
the functional I satisfies the (P.S.)∗c condition with respect to (En)n for
any real number c.

Proof. Let c ∈ R and (hn) be a sequence in N such that hn → +∞,
(zn)n be a sequence such that

zn ∈ Ehn , ∀n, I(zn) → c, PEhn
∇I(zn) → 0.

We claim that (zn)n is bounded. By contradiction we suppose that
‖zn‖ → +∞ and set ẑn = zn

‖zn‖ . Then

〈PEhn
∇I(zn), ẑn〉 = 〈∇I(zn), ẑn〉 = 2

I(zn)

‖zn‖ −
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∫ 2π

0
Hz(zn) · zndt− 2

∫ 2π

0
H(z)dt

‖zn‖ −→ 0.

Hence ∫ 2π

0
Hz(zn) · zndt− 2

∫ 2π

0
H(zn)dt

‖zn‖ −→ 0.

By Lemma 2.2,

grad
∫ 2π

0
H(z)dt

‖zn‖ converges

and ẑn ⇀ 0. We get

PEhn
∇I(zn)

‖zn‖ = PEhn
ẑn −

PEhn
grad(

∫ 2π

0
H(z)dt)

‖zn‖ −→ 0,

so (PEhn
ẑn converges. Since (ẑn)n is bounded and ( d

dt
)−1 is a compact

mapping, up to subsequence, (ẑn)n has a limit. Since ẑn ⇀ (0, . . . , 0), we
get ẑn → (0, . . . , 0), which is a contradiction to the fact that ‖ẑn‖ = 1.
Thus (zn)n is bounded. We can now suppose that zn ⇀ z for some

z ∈ E. Since the mapping z 7→ grad(
∫ 2π

0
H(z)dt) is a compact map-

ping, grad(
∫ 2π

0
H(zn)dt) −→ grad(

∫ 2π

0
H(z)dt). Thus (PEhn

żn) con-

verges. Since ( d
dt

)−1 is a compact operator and (zn)n is bounded, we
deduce that, up to a subsequence, (zn)n converges to some z strongly
with ∇I(z) = lim∇I(zn) = 0. Thus we prove the lemma.

4. Proof of theorem 1.1

Assume that H satisfies the conditions (H1)-(H6). We note that
I(0, 0) = 0. By Proposition 2.2, I(z) ∈ C1. By (ii) of Lemma 2.2,

z 7→ grad(
∫ 2π

0
H(z)dt is a compact mapping. By Lemma 3.2, there exist

a small number ρ > 0 and a small ball Bρ ⊂ E0⊕E+ with radius ρ such
that if z ∈ ∂Bρ, then α = inf I(z) > 0, and there is an e ∈ E0⊕E+ and
R > ρ such that if

W = (B̄R ∩ (E0 ⊕ E−))⊕ {re| 0 < r < R},
then

sup
z∈∂W

I(z) ≤ 0.
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Let us set β = supW I. We note that β < +∞. Let (En)n be a sequence
of subspaces of E satisfying (3.2). Clearly E0 ⊂ En for all n, and ∂Bρ

and ∂W link. We have, for all n ∈ N ,

sup
∂W∩En

I < inf
∂Bρ∩En

I.

Moreover, by Lemma 3.3, In = I|En satisfies the (P.S.)∗c condition for
any c ∈ R. Thus by Lemma 3.1 (Variational Linking Theorem), there
exists a critical point zn for In with

α ≤ inf
∂Bρ∩En

I ≤ I(zn) ≤ sup
W∩En

I ≤ β.

Since In satisfies the (P.S.)∗c condition, we obtain that, up to a subse-
quence, zn → z, with z a critical point for I such that α ≤ I(z) ≤ β.
Hence z 6= (0, 0). Thus system (1.1) has a nontrivial solution. Thus
Theorem 1.1 is proved.
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