• 제목/요약/키워드: functional limit theorem

검색결과 47건 처리시간 0.019초

A NOTE ON FUNCTIONAL LIMIT THEOREM FOR THE INCREMENTS OF FBM IN SUP-NORM

  • Hwang, Kyo-Shin
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.275-287
    • /
    • 2008
  • In this paper, using large deviation results for Gaussian processes, we establish some functional limit theorems for increments of a fractional Brownian motion in the usual sup-norm via estimating large deviation probabilities for increments of a fractional Brownian motion.

  • PDF

On the Functional Central Limit Theorem of Negatively Associated Processes

  • Baek Jong Il;Park Sung Tae;Lee Gil Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.117-123
    • /
    • 2005
  • A functional central limit theorem is obtained for a stationary linear process of the form $X_{t}= \sum\limits_{j=0}^\infty{a_{j}x_{t-j}}$, where {x_t} is a strictly stationary sequence of negatively associated random variables with suitable conditions and {a_j} is a sequence of real numbers with $\sum\limits_{j=0}^\infty|a_{j}|<\infty$.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.507-517
    • /
    • 2009
  • We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

  • PDF

A functional central limit theorem for positively dependent random fields

  • Tae Sung Kim;Eun Yang Seok
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.265-272
    • /
    • 1996
  • In this note we prove a functional central limit theorem for linearly positive quadrant dependent(LPQD) random fields, satisfying some assumption on covariances and the moment condition $\sup_{n \in \Zeta^d} E$\mid$S_n$\mid$^{2+\rho} < \infty$ for some $\rho > 0$. We also apply this notion to random measures.

  • PDF

CENTRAL LIMIT THEOREM FOR ASSOCIATED RANDOM VARIABLE

  • Ru, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제1권1호
    • /
    • pp.31-42
    • /
    • 1994
  • In this paper we investigate an functional central limit theorem for a nonstatioary d-parameter array of associated random variables applying the crite-rion of the tightness condition in Bickel and Wichura[1971]. Our results imply an extension to the nonstatioary case of invariance principle of Burton and Kim(1988) and analogous results for the d-dimensional associated random measure. These re-sults are also applied to show a new functional central limit theorem for Poisson cluster random variables.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR THE GIBBS SAMPLER

  • Lee, Oe-Sook
    • 대한수학회논문집
    • /
    • 제14권3호
    • /
    • pp.627-633
    • /
    • 1999
  • Let the given distribution $\pi$ have a log-concave density which is proportional to exp(-V(x)) on $R^d$. We consider a Markov chain induced by the method Gibbs sampling having $\pi$ as its in-variant distribution and prove geometric ergodicity and the functional central limit theorem for the process.

  • PDF

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • 김태성;백종일
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF