• Title/Summary/Keyword: functional cysteine

Search Result 86, Processing Time 0.022 seconds

Emerging roles of protein disulfide isomerase in cancer

  • Lee, Eunyoug;Lee, Do Hee
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.401-410
    • /
    • 2017
  • The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodegenerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.

Identification of Essential Amino acid Residues in Valine Dehydrogenase from Streptomyces albus

  • Hyun Chang-Gu;Kim Sang-Suk;Suh Joo-Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.50-53
    • /
    • 2006
  • Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase(ValDH) were highly conserved in the corresponding region of $NAD(P)^+$-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.

Molecules of the Tumor Necrosis Factor (TNF) Receptor and Ligand Superfamilies: Endless Stories

  • Kwon, Byung-Suk;Kwon, Byoung-Se
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.419-428
    • /
    • 1999
  • Tumor necrosis factor (TNF) receptor members have unique structures composed of 2-4 cysteine - rich pseudorepeats in the extracellular domain. On ligation by trimeric ligand molecules, oligomerization of three receptor molecules occurs, which in turn activates the receptor and recruits intracellular signaling molecules to the cytoplasmic tail to initiate biological events. Recently, the numbers of tumor necrosis factor receptor and ligand family members have been rapidly expanding. Functional characterization of the new members has indicated redundant roles with other known members as well as provided insights into novel functions. In particular, identification of soluble decoy receptors which have the ability to bind multiple ligands highlights a complex control mechanism of immune responses by these molecules. Studies of the new members have also revealed that the TNF receptor and ligand family members play an important role in other than the immune system.

  • PDF

Kinetic Studies of Aspartase from Hafnia alvei byTemperature Dependence Activity Changes

  • Yun, Mun Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.379-382
    • /
    • 2000
  • The temperature dependence of the kinetic parameters of the aspartase-catalyzed reaction has been examined in the direction of deamination. The pK1values at 37$^{\circ}C$, 25$^{\circ}C$, 16$^{\circ}C$ and 7$^{\circ}C$ were 6.2 $\pm$ 0.1, 6.3 $\pm$ 0.1, $6.7{\pm}0.3$ and 6.9 $\pm$ 0.3, respectively. On the other hand, the pK2 values at 37$^{\circ}C$,25$^{\circ}C$, 16$^{\circ}C$ and 7$^{\circ}C$ were 8.1 $\pm0.2$, 8.3 $\pm$ 0.2, 8.2 $\pm$ 0.3 and 8.0 $\pm$ 0.2,respectively. The enthalpy of ionization, DHion, calculated from the slope of pK1, are 6.0 $\pm$ 0.3 kcal/mol. These results validate the prediction that aspartase requires a histidine residue for a general base, and a cysteine (or having a carboxyl functional group) for a general acid.

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

Quality Characteristics of Vinegar Added with Different Levels of Black Garlic (흑마늘의 첨가량을 달리한 식초의 품질특성)

  • Sim, Hye Jin;Seo, Weon Taek;Choi, Myoung Hyo;Kim, Kyoung Hwa;Shin, Jung Hye;Kang, Min Jung
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.16-26
    • /
    • 2016
  • In this study, we aimed to develop functional vinegar with different levels of black garlic through two stages of fermentation. Black garlic vinegars were prepared from black garlic and water (w/w) mixed with 1:2 (BG3), 1:5 (BG6), 1:9 (BG9) and 1:11 (BG12), and adding the sugar by adjusting the soluble solids content to $14^{\circ}Brix$. The alcohol content of black garlic vinegar was 5.2-5.5% after 7 days of alcohol fermentation at $25^{\circ}C$. Acetic acid fermented was at $30^{\circ}C$ for 25 days and samples were taken at 3, 6, 9, 12, 15, 20 and 25 days. The pH of black garlic vinegar was not significantly different among the samples, but acidity was increased during fermentation. Total polyphenol contents showed irregular changes with the fermentation periods and were higher by black garlic content. At 25 days fermentation, total polyphenol contents were 18.96-56.56 mg/100 mL. Acetic acid content of black garlic vinegars was higher than other organic acids. S-allyl cysteine (SAC) contents of BG3 and BG6 were 13.03-14.54 and 1.69-2.20 mg/L, respectively. However SAC was not detected in BG9 and BG12. In 25 days fermented black garlic vinegar, the major mineral was K with a content ratio of 61-68% of total minerals. The DPPH and ABTS radical scavenging activity of 25 days fermented black garlic vinegar were stronger at higher black garlic content.

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli

  • Park, Jimin;Kim, Mi-Sun;Joo, Keehyung;Jhon, Gil-Ja;Berry, Edward A.;Lee, Jooyoung;Shin, Dong Hae
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.495-500
    • /
    • 2016
  • We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

Development of SSLP Marker Targeted to P34 Null Gene in Soybean (콩 P34 단백질 결핍 유전자를 이용한 SSLP 마커 개발)

  • Yang, Kiwoung;Ko, Jong-Min;Lee, Young-Hoon;Jeon, Myeong Gi;Jung, Chan-Sik;Baek, In-Youl;Kim, Hyun-Tae;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.502-506
    • /
    • 2010
  • Soybean seed possesses about 15 allergenic proteins recognized by IgEs from soy-sensitive human. The allergenic impact of soybean proteins limit its extensive usage in a broad range of processed foods. Soybean protein P34 or Gly m Bd 30k of the cysteine protease family is one of the major allergen of the soybean seed. P34-null soybean, PI567476, was identified among soybean (Glycine max & Glycine soja Sieb. and Zucc) of approximately 16,226 accessions from USDA soybean germplasm screened. Also, for P34 gene (Williams 82; whole genome sequence cultivar) and P34 null gene (PI567476) comparative analysis of sequences listed in the NCBI database showed the presence of a SSLP (Simple Sequence Length Polymorphism) of 4 base pair. So, a SSLP marker was designed to reveal the polymorphism of the locus. In this study, a population of 339 $F_2$ recombinant inbred lines generated by cross between Taekwang (Glycine max) and PI567476 was used to select $F_{2:3}$ plant of a P34 null gene. The result separation rate Taekwang type, heterozygous type and PI567476 type were shown in 85: 187: 67 since single gene is concerned in as the separation rate of 1:2:1 in $X^2{_{0.05}}=5.99$, df=2. In future, selected plant will identify protein level, whether P34 null protein is equal to P34 null gene.

Physicochemical Properties of Rice Cultivars with Different Amylose Contents (아밀로스 함량이 다른 쌀 품종의 이화학적 특성)

  • Choi, In-Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1313-1319
    • /
    • 2010
  • Rice cultivars of Goami2 (G2), Baegjinju (BJJ), and Sulgaeng (SG) with different amylose contents were developed by mutation breeding via N-methyl-N-nitrosourea (MNU) treatment to Ilpumbyeo (IP), high japonica rice. They were identified by different appearances such as grain size, color, and shape. In this experiment, the compositional and physical qualities of those cultivars were examined. The G2 rice classified as a high-amylose rice cultivar was significantly higher in its non-digestable carbohydrates contents. Linoleic and oleic acid were composed of 70~75% of all fatty acids composition regardless of milled and brown rice, except G2 rice in which palmitic acid was the major fatty acid followed by linoleic acid and oleic acid in order. Major amino acids were aspartic acid, glutamic acid, and hydroxy lysine. It was found that cysteine contents were higher in the cultivars of endosperm mutant rice. The DSC analysis revealed that enthalpy was the highest in BJJ followed by SG, IP, and G2 rice. The lowest enthalpy of G2 might be attributable to the higher amylose content. Ilpumbyeo in its cooked rice form showed the highest in Toyo value and less in hardness, but G2 was vise versa. Results of gelatinization and cooked rice properties suggest that G2 was less suitable for cooked rice, but has a potential for functional ingredients from nutritional point of view. The BJJ and SG could be used for traditional cooking as well as for processed foods.