Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0131

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation  

Kwon, Jae Won (Department of Physiology, Seoul National University College of Medicine)
Jeon, Young Keul (Department of Physiology, Seoul National University College of Medicine)
Kim, Jinsung (Department of Physiology, Seoul National University College of Medicine)
Kim, Sang Jeong (Department of Physiology, Seoul National University College of Medicine)
Kim, Sung Joon (Department of Physiology, Seoul National University College of Medicine)
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.
Keywords
calcium homeostasis modulator 1; disulfide bond; membrane trafficking; oligomerization; reducing agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Narayan, M. (2012). Disulfide bonds: protein folding and subcellular protein trafficking. FEBS J. 279, 2272-2282.   DOI
2 Ma, Z., Siebert, A.P., Cheung, K.H., Lee, R.J., Johnson, B., Cohen, A.S., Vingtdeux, V., Marambaud, P., and Foskett, J.K. (2012). Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc. Natl. Acad. Sci. U. S. A. 109, E1963-E1971.
3 Okui, M., Murakami, T., Sun, H., Ikeshita, C., Kanamura, N., and Taruno, A. (2021). Posttranslational regulation of CALHM1/3 channel: N-linked glycosylation and S-palmitoylation. FASEB J. 35, e21527.
4 Ren, Y., Wen, T., Xi, Z., Li, S., Lu, J., Zhang, X., Yang, X., and Shen, Y. (2020). Cryo-EM structure of the calcium homeostasis modulator 1 channel. Sci. Adv. 6, eaba8161.   DOI
5 Roh, J.W., Hwang, G.E., Kim, W.K., and Nam, J.H. (2021). Ca2+ sensitivity of anoctamin 6/TMEM16F is regulated by the putative Ca2+-binding reservoir at the N-terminal domain. Mol. Cells 44, 88-100.   DOI
6 Cho, H.C., Tsushima, R.G., Nguyen, T.T., Guy, H.R., and Backx, P.H. (2000). Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1. Biochemistry 39, 4649-4657.   DOI
7 Ramesh, A., Peleh, V., Martinez-Caballero, S., Wollweber, F., Sommer, F., van der Laan, M., Schroda, M., Alexander, R.T., Campo, M.L., and Herrmann, J.M. (2016). A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. J. Cell Biol. 214, 417-431.   DOI
8 Schulteis, C.T., Nagaya, N., and Papazian, D.M. (1996). Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels. Biochemistry 35, 12133-12140.   DOI
9 Syrjanen, J.L., Michalski, K., Chou, T.H., Grant, T., Rao, S., Simorowski, N., Tucker, S.J., Grigorieff, N., and Furukawa, H. (2020). Structure and assembly of calcium homeostasis modulator proteins. Nat. Struct. Mol. Biol. 27, 150-159.   DOI
10 Bannister, J.P., Young, B.A., Sivaprasadarao, A., and Wray, D. (1999). Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane. FEBS Lett. 458, 393-399.   DOI
11 Deutsch, C. (2003). The birth of a channel. Neuron 40, 265-276.   DOI
12 Duan, J., Li, J., Chen, G.L., Ge, Y., Liu, J., Xie, K., Peng, X., Zhou, W., Zhong, J., Zhang, Y., et al. (2019). Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 5, eaaw7935.   DOI
13 Schulteis, C.T., John, S.A., Huang, Y., Tang, C.Y., and Papazian, D.M. (1995). Conserved cysteine residues in the shaker K+ channel are not linked by a disulfide bond. Biochemistry 34, 1725-1733.   DOI
14 Hong, C., Kwak, M., Myeong, J., Ha, K., Wie, J., Jeon, J.H., and So, I. (2015). Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Arch. 467, 703-712.   DOI
15 Jeon, Y.K., Choi, S.W., Kwon, J.W., Woo, J., Choi, S.W., Kim, S.J., and Kim, S.J. (2021). Thermosensitivity of the voltage-dependent activation of calcium homeostasis modulator 1 (calhm1) ion channel. Biochem. Biophys. Res. Commun. 534, 590-596.   DOI
16 Ma, Z., Taruno, A., Ohmoto, M., Jyotaki, M., Lim, J.C., Miyazaki, H., Niisato, N., Marunaka, Y., Lee, R.J., Hoff, H., et al. (2018). CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98, 547-561.e10.   DOI
17 Duan, J., Li, J., Zeng, B., Chen, G.L., Peng, X., Zhang, Y., Wang, J., Clapham, D.E., Li, Z., and Zhang, J. (2018). Structure of the mouse TRPC4 ion channel. Nat. Commun. 9, 3102.   DOI
18 Chen, C., Calhoun, J.D., Zhang, Y., Lopez-Santiago, L., Zhou, N., Davis, T.H., Salzer, J.L., and Isom, L.L. (2012). Identification of the cysteine residue responsible for disulfide linkage of Na+ channel alpha and beta2 subunits. J. Biol. Chem. 287, 39061-39069.   DOI
19 Demura, K., Kusakizako, T., Shihoya, W., Hiraizumi, M., Nomura, K., Shimada, H., Yamashita, K., Nishizawa, T., Taruno, A., and Nureki, O. (2020). Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies. Sci. Adv. 6, eaba8105.   DOI
20 Dreses-Werringloer, U., Lambert, J.C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., et al. (2008). A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 133, 1149-1161.   DOI
21 Calderon-Rivera, A., Andrade, A., Hernandez-Hernandez, O., Gonzalez-Ramirez, R., Sandoval, A., Rivera, M., Gomora, J.C., and Felix, R. (2012). Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca(2+) channel alpha(2)delta-1 auxiliary subunit. Cell Calcium 51, 22-30.   DOI
22 Taruno, A., Vingtdeux, V., Ohmoto, M., Ma, Z., Dvoryanchikov, G., Li, A., Adrien, L., Zhao, H., Leung, S., Abernethy, M., et al. (2013). CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223-226.   DOI
23 Wang, L., Cvetkov, T.L., Chance, M.R., and Moiseenkova-Bell, V.Y. (2012). Identification of in vivo disulfide conformation of TRPA1 ion channel. J. Biol. Chem. 287, 6169-6176.   DOI
24 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296-W303.   DOI
25 Yang, W., Wang, Y., Guo, J., He, L., Zhou, Y., Zheng, H., Liu, Z., Zhu, P., and Zhang, X.C. (2020). Cryo-electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans. Protein Sci. 29, 1803-1815.   DOI
26 Drozdzyk, K., Sawicka, M., Bahamonde-Santos, M.I., Jonas, Z., Deneka, D., Albrecht, C., and Dutzler, R. (2020). Cryo-EM structures and functional properties of CALHM channels of the human placenta. Elife 9, e55853.   DOI
27 Tanis, J.E., Ma, Z., and Foskett, J.K. (2017). The NH2 terminus regulates voltage-dependent gating of CALHM ion channels. Am. J. Physiol. Cell Physiol. 313, C173-C186.   DOI
28 Choi, W., Clemente, N., Sun, W., Du, J., and Lu, W. (2019). The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576, 163-167.   DOI
29 Al Khamici, H., Hossain, K.R., Cornell, B.A., and Valenzuela, S.M. (2016). Investigating sterol and redox regulation of the ion channel activity of CLIC1 using tethered bilayer membranes. Membranes (Basel) 6, 51.   DOI
30 Berman, J.M. and Awayda, M.S. (2013). Redox artifacts in electrophysiological recordings. Am. J. Physiol. Cell Physiol. 304, C604-C613.   DOI
31 Kashio, M., Wei-Qi, G., Ohsaki, Y., Kido, M.A., and Taruno, A. (2019). CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci. Rep. 9, 2681.   DOI
32 Foskett, J.K. (2020). Structures of CALHM channels revealed. Nat. Struct. Mol. Biol. 27, 227-228.   DOI
33 Fujiwara, Y., Takeshita, K., Nakagawa, A., and Okamura, Y. (2013). Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel. J. Biol. Chem. 288, 17968-17975.   DOI
34 Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
35 Yereddi, N.R., Cusdin, F.S., Namadurai, S., Packman, L.C., Monie, T.P., Slavny, P., Clare, J.J., Powell, A.J., and Jackson, A.P. (2013). The immunoglobulin domain of the sodium channel beta3 subunit contains a surface-localized disulfide bond that is required for homophilic binding. FASEB J. 27, 568-580.   DOI
36 Zuniga, L. and Zuniga, R. (2016). Understanding the cap structure in K2P channels. Front. Physiol. 7, 228.   DOI
37 Gamper, N., Stockand, J.D., and Shapiro, M.S. (2005). The use of Chinese hamster ovary (CHO) cells in the study of ion channels. J. Pharmacol. Toxicol. Methods 51, 177-185.   DOI
38 Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., 3rd, and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-345.   DOI
39 Hwang, E.M., Kim, E., Yarishkin, O., Woo, D.H., Han, K.S., Park, N., Bae, Y., Woo, J., Kim, D., Park, M., et al. (2014). A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat. Commun. 5, 3227.   DOI
40 Isacoff, E.Y., Jan, L.Y., and Minor, D.L., Jr. (2013). Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 80, 658-674.   DOI
41 Zha, X.M., Wang, R., Collier, D.M., Snyder, P.M., Wemmie, J.A., and Welsh, M.J. (2009). Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits. Proc. Natl. Acad. Sci. U. S. A. 106, 3573-3578.   DOI
42 Vingtdeux, V., Chang, E.H., Frattini, S.A., Zhao, H., Chandakkar, P., Adrien, L., Strohl, J.J., Gibson, E.L., Ohmoto, M., Matsumoto, I., et al. (2016). CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci. Rep. 6, 24250.   DOI
43 Xu, S.Z., Sukumar, P., Zeng, F., Li, J., Jairaman, A., English, A., Naylor, J., Ciurtin, C., Majeed, Y., Milligan, C.J., et al. (2008). TRPC channel activation by extracellular thioredoxin. Nature 451, 69-72.   DOI