Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0055

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli  

Park, Jimin (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Kim, Mi-Sun (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Joo, Keehyung (Center for insilico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study)
Jhon, Gil-Ja (Department of Chemistry and Nano Science, Global Top5 Research Program, Ewha Womans University)
Berry, Edward A. (Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University)
Lee, Jooyoung (Center for insilico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study)
Shin, Dong Hae (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Abstract
We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.
Keywords
frwD; fructose specific enzyme EIIB; functional cysteine; PTS permease; PTS system; X-ray crystallography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ab, E., Schuurman-Wolters, G., Reizer, J., Saier, M.H., Dijkstra, K., Scheek, R.M., and Robillard G.T. (1997) The NMR side-chain assignments and solution structure of enzyme IIB of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Protein Sci. 6, 304-314.
2 Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect D: Biol. Crystallogr. 66, 213-221.   DOI
3 Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect D: Biol. Crystallogr. 68, 352-367.
4 Barabote, R.D., and Saier, M.H., Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69, 608-634.   DOI
5 Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., and Jones, D.T. (2013). Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349-357.   DOI
6 Deutscher, J., Ake, F.M., Derkaoui, M., Zebre, A.C., Cao, T.N., Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E., and Joyet, P. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78, 231-256.   DOI
7 Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549.   DOI
8 Joo, K., Kim, M.-S., Park, J., Lee, J., and Shin, D.H. (2015). Highaccuracy protein structure modeling and its application to molecular replacement of crystallographic phasing. Biodesign. 3, 123-130.
9 Lei, J., Li, L.F., and Su, X.D. (2009). Crystal structures of phosphotransferase system enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from Streptococcus mutans. J. Mol. Biol. 386, 465-475.   DOI
10 Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., et al. (2015). CDD: NCBI's conserved domain database. Nucleic acids Res. 43, D222-226.   DOI
11 Oganesyan, N., Kim, S.-H., and Kim, R. (2005). On-column protein refolding for crystallization. J. Struct. Funct. Genomics 6, 177-182.   DOI
12 Saier, M.H., Jr., and Reizer, J. (1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13, 755-764.   DOI
13 Sankhala, R.S., Lokareddy, R.K., and Cingolani, G. (2014). Structure of human PIR1, an atypical dual-specificity phosphatase. Biochemistry 53, 862-871.   DOI
14 Tadwal, V.S., Sundararaman, L., Manimekalai, M.S., Hunke, C., and Gruber, G. (2012). Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A(1)A(0) ATP synthases. J. Struct. Biol. 180, 509-518.   DOI
15 Schauder, S., Nunn, R.S., Lanz, R., Erni, B., and Schirmer, T. (1998). Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J. Mol. Biol. 276, 591-602.   DOI
16 Shin, D.H. (2008). A preliminary X-ray study of a refolded PTS EIIBfruc protein from Escherichia coli. Protein Pept. Lett. 15, 630-632.   DOI
17 Su, X.D., Taddei, N., Stefani, M., Ramponi, G., and Nordlund, P. (1994). The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature 370, 575-578.   DOI
18 van Montfort, R.L., Pijning, T., Kalk, K.H., Reizer, J., Saier, M.H., Jr., Thunnissen, M.M., Robillard, G.T., and Dijkstra, B.W. (1997). The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure 5, 217-225.   DOI
19 Waterhouse, A.M., Procter, J. B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191.   DOI