• Title/Summary/Keyword: functional composites

Search Result 293, Processing Time 0.023 seconds

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

New Functional Conductive Polymer Composites Containing Nickel Coated Carbon Black Reinforced Phenolic Resin

  • Farid El-Tantawy;Nadia Abdel Aal;Yong Kiel Sung
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.194-205
    • /
    • 2005
  • The network structure of Ni-coated carbon black (NCB) composites filled with phenolic resin was investigated by means of using scanning electron microscopy, viscosity, interfacial tension, shrinkability, Flory-Huggins interaction parameters, and swelling index. The electrical properties of the composites have been characterized by measurement of the specific conductivity as a function of temperature. Additionally, the variation of conductivity with temperature for the composites has been reported and analyzed in terms of the dilution volume fraction, relative volume expansion, and barrier heights energy. The thermal stability of phenolic-NCB composites has been also studied by means of the voltage cycle processes. The experimental data of EMI wave shielding were analyzed and compared with theoretical calculations. The mechanical properties such as tensile strength, tensile modulus, hardness and elongation at break (EB) of NCB-phenolic resin composites were also investigated.

Electrical Properties of Organic/lnorganic Hybrid Composites for Insulation materials (유기/무기 복합 절연재료의 전기적 특성)

  • 깅상철;김현석;옥정빈;안명진;박도현;이건주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.78-83
    • /
    • 2001
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate content and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defect in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

  • PDF

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong;Natsuki, Toshiaki;Kurashiki, Ken;Ni, Qing-Qing;Iwamoto, Masaharu;Fujii, Yoshimichi
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.195-206
    • /
    • 2007
  • Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Development of Environmentally Friendly Semi-Structure Poly(Ethylene/Butylene) Rubber-based Pressure Sensitive Adhesive (친환경적인 준구조용 Poly(Ethylene/Butylene) 고무수지계 점착제의 개발)

  • Hong, Soungtaek;Park, Young-Jun;Kim, Hyun-Joong;Dilger, K.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.12-18
    • /
    • 2006
  • Recently, as industries and technologies are increased, superior adhesives having more and more developed functions and properties have been demanded. In this article, to use the merits and viscoelastic properties of poly(ethylene/butylene) rubber resin and to supplement the demerits, semi-structure pressure sensitive adhesives (PSAs) are developed. Aslo, it can be said environmentally friendly PSAs because of not use the organic solvent and not emit volatile organic compounds (VOCs).

  • PDF

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review (탄소나노튜브-폴리머 복합체의 기능화와 제조방법)

  • Oh, Won-Chun;Ko, Weon-Bae;Zhang, Feng-Jun
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.80-86
    • /
    • 2010
  • Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. The functionalized CNTs are believed to be very promising in the fields such as preparation of functional and composite materials. CNT-Polymer composites are expected to have good processability characteristics of the polymer and excellent functional properties of the CNTs. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNT-reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, and the alignment and control of the CNTs in the matrix. There are several methods for the dispersion of nanotubes in the polymer matrix such as solution mixing, bulk mixing, melt mixing, in-situ polymerization and chemical functionalization of the carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer composites are described in this review.

Elution Safety of Recycled Plastic/EAF Dust Composites by Using Leaching Test (폐플라스틱/제강 Dust 성형제의 용출안전성에 대한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, We have investigated leaching characteristics of heavy metals for recycled plastic composites containing EAF(Electric Arc Furnace) dust & EAF slag. EAF dust & EAF slag used that is generated in the 3 steel-making compaines in domestic. The physical and chemical properties of EAF dust & slag was examined by measuring specific surface area. porosity, oil absorption test and chemical wetting analysis etc. Results of total analysis indicated that EAF dust, slag contained significant amount of hazardous metals such as Cu, Pb, Cd and Cr. But, In the leaching test of the recycled plastic composites containing EAF dust, slag by Korean Standard Leaching Procedure, composites shows much lower leaching concentration of heavy metals. It was concluded that the recycled plastic composites containing EAF dust, slag showed good physical and chemical characteristics. This means that the EAF dust, slag can be effectively used as a functional filler.