DOI QR코드

DOI QR Code

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Received : 2011.11.26
  • Accepted : 2012.02.03
  • Published : 2012.05.20

Abstract

In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

Keywords

References

  1. Show, Y.; Imaizumi, K. Diamond Relat. Mater. 2007, 16, 1154. https://doi.org/10.1016/j.diamond.2006.11.005
  2. Ye, J. S.; Liu, X.; Cui, H. F.; Zhang, W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249. https://doi.org/10.1016/j.elecom.2005.01.008
  3. Fang, B.; Wei, Y. Z.; Kumagai, M. J. Power Sources 2006, 155, 487. https://doi.org/10.1016/j.jpowsour.2005.04.012
  4. Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 883. https://doi.org/10.1016/j.electacta.2004.02.072
  5. Li, C.; Wang, D.; Liang, T.; Wang, X.; Ji, L. Mater. Lett. 2004, 58, 3774. https://doi.org/10.1016/j.matlet.2004.07.027
  6. Hsieh, C. T.; Lin, Y. T. Micropor. Mesopor. Mater. 2006, 93, 232. https://doi.org/10.1016/j.micromeso.2006.02.017
  7. Fang, B.; Wei, Y. Z.; Suzuki, K.; Kumagai, M. Electrochim. Acta 2005, 50, 3616. https://doi.org/10.1016/j.electacta.2004.12.032
  8. Tanaike, O.; Futaba, D. N.; Hata, K.; Hatori, H. Carbon Lett. 2009, 10, 90. https://doi.org/10.5714/CL.2009.10.2.090
  9. Lim, J. W.; Jeong, E.; Jung, M. J.; Lee, S. I.; Lee, Y. S. J. Ind. Eng. Chem. 2012, 18, 116. https://doi.org/10.1016/j.jiec.2011.11.074
  10. Karthikeyan, G.; Sahoo, S.; Nayak, G. C.; Das, C. K. Macromo. Res. 2012, 20, 351. https://doi.org/10.1007/s13233-012-0020-7
  11. Kim, S.; Park, S. J. Electrochim. Acta 2008, 53, 4082. https://doi.org/10.1016/j.electacta.2007.08.067
  12. Kim, S.; Jung, Y.; Park, S. J. Colloids Surfaces A 2008, 313-314, 189. https://doi.org/10.1016/j.colsurfa.2007.04.091
  13. Seo, M. K.; Park, S. J. Chem. Phys. Lett. 2004, 395, 44. https://doi.org/10.1016/j.cplett.2004.07.047
  14. Service, R. F. Science 1998, 281, 940. https://doi.org/10.1126/science.281.5379.940
  15. Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605. https://doi.org/10.1038/363605a0
  16. Molina-Sabio, M.; Gonzalez, M. T.; Rodriguez-Reinoso, F.; Sepulveda-Escribano, A. Carbon 1996, 34, 505. https://doi.org/10.1016/0008-6223(96)00006-1
  17. Addoun, A.; Dentzer, J.; Ehrburger, P. Carbon 2002, 40, 1140. https://doi.org/10.1016/S0008-6223(02)00088-X
  18. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  19. Dubinin, M. M.; Plavnik, G. M. Carbon 1968, 6, 183. https://doi.org/10.1016/0008-6223(68)90302-3
  20. Barret, E. P.; Joyner, P. B.; Halenda, P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126
  21. Pekala, R. W. J. Mater. Sci. 1989, 24, 3221. https://doi.org/10.1007/BF01139044
  22. Pekala, R. W. US patent, 1991, 4997804.
  23. Hu, C. C.; Su, J. H.; Wen, T. C. J. Phys. Chem. Solids 2007, 68, 2353. https://doi.org/10.1016/j.jpcs.2007.07.002
  24. Prabaharan, S. R. S.; Vimala, R. Z. J. Power Sources 2006, 161, 730. https://doi.org/10.1016/j.jpowsour.2006.03.074
  25. Li, C.; Wang, D.; Liang, T.; Wang, X.; Ji, L. Mater. Lett. 2004, 58, 3774. https://doi.org/10.1016/j.matlet.2004.07.027
  26. Kim, B.; Chung, H.; Min, B. K.; Kim, H.; Kim, W. Bull. Korean Chem. Soc. 2010, 31, 3697. https://doi.org/10.5012/bkcs.2010.31.12.3697
  27. Ma, R. Z.; Liang, J.; Wei, B. Q.; Zhang, B.; Xu, C. L.; Wu, D. H. J. Power Sources 1999, 84, 126. https://doi.org/10.1016/S0378-7753(99)00252-9
  28. Momma, T.; Liu, X.; Osaka, T.; Ushio, Y.; Sawada, Y. J. Power Sources 1996, 60, 249. https://doi.org/10.1016/S0378-7753(96)80018-8
  29. Kissinger, P. T. In The Laboratory Techniques in Electroanalytical Chemistry; Kissinger, P. T., Heineman, W. R., Eds.; Marcel Dekker: New York, 1999; p 611.
  30. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Orfao, J. J. M. Carbon 1999, 37, 1379. https://doi.org/10.1016/S0008-6223(98)00333-9
  31. Hsieh, C. T.; Teng, H. Carbon 2002, 40, 667. https://doi.org/10.1016/S0008-6223(01)00182-8
  32. Jagannathan, S.; Liu, T.; Kumar, S. Compos. Sci. Technol. 2010, 70, 593. https://doi.org/10.1016/j.compscitech.2009.12.008
  33. Sharma, P.; Bhatti, T. S. Energy. Convers. Mag. 2010, 51, 2901. https://doi.org/10.1016/j.enconman.2010.06.031
  34. Conway, B. E. In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/ Plenum, 1999.
  35. Addoun, A.; Dentzer, J.; Ehrburger, P. Carbon 2002, 40, 1140. https://doi.org/10.1016/S0008-6223(02)00088-X