Browse > Article

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites  

Wu, Shi-Hong (Division of Advanced Fibro-Science, Kyoto Institute of Technology)
Natsuki, Toshiaki (Dept. of Functional Machinery and Mechanics, Shinshu University)
Kurashiki, Ken (Division of Advanced Fibro-Science, Kyoto Institute of Technology)
Ni, Qing-Qing (Dept. of Functional Machinery and Mechanics, Shinshu University)
Iwamoto, Masaharu (Division of Advanced Fibro-Science, Kyoto Institute of Technology)
Fujii, Yoshimichi (Division of Advanced Fibro-Science, Kyoto Institute of Technology)
Publication Information
Advanced Composite Materials / v.16, no.3, 2007 , pp. 195-206 More about this Journal
Abstract
Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.
Keywords
Carbon nanofiber; polymer; electrical properties; nanocomposites;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ch. Ch. Ma, Y. L. Huang, H. C. Kuan and Y. S. Chiu, Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites, J. Polym. Sci.: Part B: Polym. Phys. 43, 345-358 (2005)   DOI   ScienceOn
2 J. Xua, J. P. Donohoeb and C. U. Pittman Jr., Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites, Composites: Part A 35, 693-701 (2004)   DOI   ScienceOn
3 P. Sheng, E. K. Sichel and J. I. Gittleman, Fluctuation induced tunneling conduction in carbon polyvinylchloride composites, Phys. Rev. Lett 40, 1197-1200 (1978)   DOI
4 X. Liang, The dependence of resistivity of carbon fibers/ABS resin composites on the temperature, J. Mater. Sci. Lett. 19, 1215-1216 (2000)   DOI   ScienceOn
5 G. Wu, T. Miura, S. Asai and M. Sumita, Carbon black-loading induced phase fluctuations in PCDF/PMMA miscible blends: dynamic percolation measurements, Polymer 42, 3271-3279 (2001)   DOI   ScienceOn
6 A. Katada, Y. Konishi, T. Tominaga, S. Asai and M. Sumita, Dynamic percolation phenomenon of poly(methyl methacrylate)/surface fluorinated carbon black composite, J. Appl. Polym. Sci. 89, 1151-1155 (2003)   DOI   ScienceOn
7 S. Shekhar, V. Prasad and S. V. Subramanyam, Transport properties of conducting amorphous carbon/poly(vinyl chloride) composite, Carbon 44, 334-340 (2006)   DOI   ScienceOn
8 F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer and K. I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules 37, 9048-9055 (2004)   DOI   ScienceOn
9 F. El-Tantawy, New double negative and positive temperature coefficients of conductive EPDM rubber TiC cerimic composites, Eur. Polym. J. 38, 567-577 (2002)   DOI   ScienceOn
10 Y. H. Hou, M. Q. Zhang and M. Zh. Rong, Performance stabilization of conductive polymer composites, J. Appl. Polym. Sci. 89, 2438-2445 (2003)   DOI   ScienceOn
11 D. Toker, D. Azulay, N. Shimoni, I. Balberg and O. Millo, Tunneling and percolation in metalinsulator composite materials, Phys. Rev. B 68, 041403-1 (2003)   DOI   ScienceOn
12 J. M. Benoit, B. Corraze and O. Chauvet, Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405(1)-241405(4) (2002)   DOI   ScienceOn
13 N. B. Janda, J. M. Keith, J. A. King, W. F. Perger and T. J. Oxby, Shielding-effectiveness modeling of carbon-fiber/nylon-6,6 composites, J. Appl. Polym. Sci. 96, 62-69 (2005)   DOI   ScienceOn
14 Y. Chekanov, R. Ohnogi, S. Asai and M. Sumta, Electrical properties of epoxy resin filled with carbon fibers, J. Mater. Sci. 34, 5589-5592 (1999)   DOI   ScienceOn
15 H. Bar, M. Narkis and G. Boiteux, The electrical behavior of thermosetting polymer composites containing metal plated ceramic filler, Polym. Compos. 26, 12-19 (2005)   DOI   ScienceOn
16 F. Dalmas, R. Dendievel, L. Chazeau, J. Cavaille and C. Gauthier, Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Materialia 54, 2923-2931 (2006)   DOI   ScienceOn
17 J. M. Torrents and T. O. Mason, Analysis of the impedance spectra of short conductive fiber reinforced composites, J. Mater. Sci. 36, 4003-4012 (2001)   DOI   ScienceOn
18 W. Di, G. Zhang, J. Q. Xu, Y. Peng, X. J. Wang and Z. Y. Xie, Positive-temperaturecoefficient/ negative-temperature-coefficient effect of low-density polyethylene filled with a mixture of carbon black and carbon fiber, J. Polym. Sci.: Part B: Polym. Phys. 41, 3094-3101 (2003)   DOI   ScienceOn
19 C. Zhang, C. A. Ma, P. Wang and M. Sumita, Temperature dependency of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction, Carbon 43, 2544-2553 (2005)   DOI   ScienceOn
20 W. H. Di and G. Zhang, Resistivity-temperature behavior of carbon fiber filled semicrystalline composites, J. Appl. Polym. Sci. 91, 1222-1228 (2004)   DOI   ScienceOn
21 F. Carmona and C. Mouney, Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers, J. Mater. Sci. 27, 1322-1326 (1992)   DOI
22 J. C. Lee, K. Nakajima, T. Ikehara and T. Nishi, Conductive-filler-filled poly(1- caprolactone)/poly (vinylbutyral) blends. II. Electric properties (positive temperature coefficient phenomenon), J. Appl. Polym. Sci. 65, 409-416 (1997)   DOI   ScienceOn
23 C. Zhang, P. Wang, C. Ma, G. Wu and M. Sumita, Temperature and time dependency of conductive network formation: dynamic percolation and percolation time, Polymer 47, 466-473 (2006)   DOI   ScienceOn
24 B. Kin, J. Lee and I. Yu, Electrical properties of single-wall carbon nanotube and epoxy composites, J. Appl. Phys. 94, 6724-6728 (2003)   DOI   ScienceOn
25 J.-E. Park, M. Saikawa, M. Atobe and T. Fuchigami, Highly-regulated nanocoatings of polymer films on carbon nanofibers using ultrasonic irradiation, Chem. Commun. 2708-2710 (2006)