• Title/Summary/Keyword: functional approach

Search Result 1,466, Processing Time 0.032 seconds

Functional Verification of 64bit RISC Microprocessor (64비트 RISC 마이크로프로세서의 기능 검증에 관한 연구)

  • 김연선;서범수
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.755-758
    • /
    • 1998
  • As the performance of microprocessor improves, the design complexity grows exponentially. Therefor, it is very important to make the bug-free model as early as possible in a design life-cycle. This paper describes the simulation-based functional verification methodology for the RTL level description model. It is performed by multi-stage verification methods using extensive hand-generated self-checking tests supplemented with random tests. This approach is opplied to the functional verification of the GPU processor of Raptor and various bugs are detected.

  • PDF

A FIXED POINT APPROACH TO THE ORTHOGONAL STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • JEON, YOUNG JU;KIM, CHANG IL
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.627-634
    • /
    • 2015
  • In this paper, we investigate the following orthogonally additive-quadratic functional equation f(2x + y) - f(x + 2y) - f(x + y) - f(y - x) - f(x) + f(y) + f(2y) = 0. and prove the generalized Hyers-Ulam stability for it in orthogonality spaces by using the fixed point method.

A FIXED POINT APPROACH TO THE STABILITY OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES

  • Kim, Changil;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.321-330
    • /
    • 2015
  • In this paper, we prove the generalized Hyers-Ulam stability for the following additive-quadratic functional equation f(2x + y) + f(2x - y) = f(x + y) + f(x - y) + 4f(x) + 2f(-x) in modular spaces by using a fixed point theorem for modular spaces.

INSTABILITY OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF EIGHTH ORDER WITH MULTIPLE DEVIATING ARGUMENTS

  • Tunc, Cemil
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.741-748
    • /
    • 2012
  • In this work, we prove the instability of solutions for a class of nonlinear functional differential equations of the eighth order with n-deviating arguments. We employ the functional Lyapunov approach and the Krasovskii criteria to prove the main results. The obtained results extend some existing results in the literature.

A FIXED POINT APPROACH TO THE STABILITY OF THE FUNCTIONAL EQUATION RELATED TO DISTANCE MEASURES

  • Shiny, Hwan-Yong;Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • In this paper, by using fixed point theorem, we obtain the stability of the following functional equations $$f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)f(p,q)h(r,s)\\f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)g(p,q)h(r,s)$$, where G is a commutative semigroup, ${\theta}:G^4{\rightarrow}{\mathbb{R}}_k$ a function and f, g, h are functionals on $G^2$.

A FIXED POINT APPROACH TO STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • Kim, Chang Il;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.453-464
    • /
    • 2016
  • In this paper, we investigate the solution of the following functional inequality $$N(f(x)+f(y)+f(z),t){\geq}N(f(x+y+z),mt)$$ for some fixed real number m with $\frac{1}{3}$ < m ${\leq}$ 1 and using the fixed point method, we prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.