A FIXED POINT APPROACH TO THE STABILITY OF AN ADDITIVE-QUADRATIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

> ABSTRACT. In this paper, we investigate the stability of a functional equation
> $f(x+3 y)-5 f(x+2 y)+10 f(x+y)-8 f(x)+5 f(x-y)-f(x-2 y)$
> $-2 f(-x)-f(2 x)+f(-2 x)=0$
> by using the fixed point theory in the sense of L. Cădariu and V.
> Radu.

1. Introduction

The stability of functional equation has begun to become a research topic from Ulam's question [20] about the stability of group homomorphisms. Hyers [8] gave an affirmative answer to this problem for additive mappings between Banach spaces. Subsequently many mathematicians came to deal with this problem (cf. $[6,13,18]$).

In this paper, let V and W be real vector spaces and Y a real Banach space. For a given mapping $f: V \rightarrow W$, we use the following

[^0]abbreviations
\[

$$
\begin{aligned}
f_{e}(x):= & \frac{f(x)+f(-x)}{2}, \quad f_{o}(x):=\frac{f(x)-f(-x)}{2} \\
A f(x, y):= & f(x+y)-f(x)-f(y) \\
Q f(x, y):= & f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
Q^{\prime} f(x, y):= & f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y) \\
& +f(x-2 y)-24 f(y) \\
D f(x, y):= & f(x+3 y)-5 f(x+2 y)+10 f(x+y)-8 f(x) \\
& +5 f(x-y)-f(x-2 y)-2 f(-x)-f(2 x)+f(-2 x)
\end{aligned}
$$
\]

for all $x, y \in V$. Each functional equation $A f(x, y)=0, Q(x, y)=0$ and $Q^{\prime} f(x, y)=0$ is called an additive functional equation, a quadratic functional equation and a quartic functional equation, respectively. Every solution of the functional equations $\operatorname{Af}(x, y)=0, Q(x, y)=0$ and $Q^{\prime} f(x, y)=0$ are called an additive mapping, a quadratic mapping and a quartic mapping, respectively. If a mapping can be expressed by the sum of a quartic mapping, a quadratic mapping and an additive mapping, then we call the mapping an additive-quadratic-quartic mapping. A functional equation is called an additive-quadratic-quartic functional equation provided that each solution of that equation is an additive-quadratic-quartic mapping and every additive-quadratic-quartic mapping is a solution of that equation.

Many mathematicians $[7,16,17]$ investigated the stability of the additive-quadratic-quartic functional equation

$$
\begin{aligned}
& f(x+2 y)+f(x-2 y)-2 f(x+y)-2 f(-x-y)-2 f(x-y) \\
& -2 f(y-x)+4 f(-x)+2 f(x)-f(2 y)-f(-2 y)+4 f(y)+4 f(-y)=0
\end{aligned}
$$

for all $x, y \in V$. They proved the stability of the above functional equation by dividing into three parts: the additive part, the quadratic part and the quartic part of the given mapping f. However, in this paper, we will show the stability of another type of additive-quadraticquartic functional equation $D f(x, y)=0$ by using fixed point theorem without dividing into three parts. We will show that every solution of functional equation $D f(x, y)=0$ is an additive-quadratic-quartic functional equation and we introduce a strictly contractive mapping which allows me to use the fixed point theory in the sense of L. Cădariu and V. Radu([2, 3, 4]) (See also $[9,10,11,12,14,15])$. And then we can adopt the fixed point method for proving the stability of the functional equation $D f(x, y)=0$.

Namely, starting from the given mapping f that approximately satisfies the functional equation $D f(x, y)=0$, a solution F of the functional equation $D f(x, y)=0$ is explicitly constructed by using the formula

$$
F(x)=\lim _{n \rightarrow \infty}\left(\frac{f_{o}\left(3^{n} x\right)}{3^{n}}+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i}(90)^{i}}{729^{n}} f_{e}\left(3^{2 n-i} x\right)\right)
$$

or

$$
F(x)=\lim _{n \rightarrow \infty} 3^{n}\left(f_{o}\left(\frac{x}{3^{n}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 90^{i}(-729)^{n-i} f_{e}\left(\frac{x}{3^{2 n-i}}\right)\right),
$$

which approximates the mapping f.

2. Main theorems

We recall the following result of the fixed point theory by Margolis and Diaz.

Theorem 2.1. ([5] or [19]) Suppose that a complete generalized metric space (X, d), which means that the metric d may assume infinite values, and a strictly contractive mapping $J: X \rightarrow X$ with the Lipschitz constant $0<L<1$ are given. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=+\infty, \forall n \in \mathbb{N} \cup\{0\}
$$

or there exists a nonnegative integer k such that:
(1) $d\left(J^{n} x, J^{n+1} x\right)<+\infty$ for all $n \geq k$;
(2) the sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in $Y:=\left\{y \in X, d\left(J^{k} x, y\right)<+\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq(1 /(1-L)) d(y, J y)$ for all $y \in Y$.

The following theorem is a particular case of Baker's theorem [1] when $\delta=0$.

Theorem 2.2. (Theorem 1 in [1]) Suppose that V and W are vector spaces over \mathbb{Q}, \mathbb{R} or \mathbb{C} and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}-$ $\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow W$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each f_{l} is a "generalized" polynomial mapping of "degree" at most $m-1$.

Baker [1] also states that if f is a "generalized" polynomial mapping of "degree" at most $m-1$, then f is expressed as $f(x)=x_{0}+\sum_{l=1}^{m-1} a_{l}^{*}(x)$ for $x \in V$, where a_{l}^{*} is a monomial mapping of degree l and f has a property $f(r x)=x_{0}+\sum_{l=1}^{m-1} r^{l} a_{l}^{*}(x)$ for $x \in V$ and $r \in \mathbb{Q}$. The monomial mapping of degree 1, 2 and 4 are also called an additive mapping, a quadric mapping and a quartic mapping, respectively.

Theorem 2.3. A mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$ with $f(0)=0$ if and only if f is an additive-quadratic-quartic mapping.

Proof. First, we assume that a mapping $f: V \rightarrow W$ satisfies $D f(x, y)=$ 0 for all $x, y \in V$. Since the equalities $f_{e}(9 x)-90 f_{e}(3 x)+729 f_{e}(x)=0$ and $f_{o}(3 x)=3 f_{o}(x)$ are obtained from

$$
\begin{aligned}
f_{e}(9 x)-90 f_{e}(3 x)+729 f_{e}(x)= & D f_{e}(0,3 x)+6 D f_{e}(0,2 x) \\
& +36 D f_{e}(x, x)+75 D f_{e}(0, x), \\
f_{o}(3 x)-3 f_{o}(x)= & 2 D f_{o}(-x, x)+D f_{o}(0,-x)
\end{aligned}
$$

for all $x \in V$, we can say that $D f_{o}(x, y)=0, D g(x, y)=0, D h(x, y)=0$, $g(3 x)=3^{4} g(x)$ and $h(3 x)=3^{2}(x)$ and $f_{o}(3 x)=3 f_{o}(x)$, where g, h are defined by $g(x):=f_{e}(3 x)-3^{2} f_{e}(x)$ and $h(x):=f_{e}(3 x)-3^{4} f_{e}(x)$. Therefore, by the comments mentioned after Theorem 2.2, we conclude that f_{o}, g and h are an additive mapping and a quadratic mapping and a quartic mapping, respectively. With the equality $f(x)=f_{o}(x)+\frac{g(x)}{72}+$ $\frac{-h(x)}{72}$, we obtain that f is an additive-quartic-quadratic mapping.

Conversely, assume that f_{1}, f_{2}, f_{3} are mappings such that the equalities $f(x):=f_{1}(x)+f_{2}(x)+f_{3}(x), A f_{1}(x, y)=0, Q f_{2}(x, y)=0$, and $Q^{\prime} f_{3}(x, y)=0$ hold for all $x, y \in V$. Then the equalities $f_{1}(x)=$ $-f_{1}(-x), f_{2}(x)=f_{2}(-x), f_{3}(x)=f_{3}(-x), f_{1}(2 x)=2 f_{1}(x), f_{2}(2 x)=$ $4 f_{2}(x)$, and $f_{3}(2 x)=16 f_{3}(x)$ hold for all $x \in V$. From the above equalities, we obtain the equalities

$$
\begin{aligned}
D f_{1}(x, y)= & -A f_{1}(x+3 y, x+y)+3 A f_{1}(x+2 y, x) \\
& -3 A f_{1}(x+y, x-y)+A f_{1}(x, x-2 y), \\
D f_{2}(x, y)= & -\frac{Q f_{2}(x+3 y, x+y)}{2}+\frac{3 Q f_{2}(x+2 y, x)}{2} \\
& -\frac{3 Q f_{2}(x+y, x-y)}{2}+\frac{Q f_{2}(x, x-2 y)}{2}, \\
D f_{3}(x, y)= & Q^{\prime} f_{3}(x+y, y)-Q^{\prime} f_{3}(x, y)
\end{aligned}
$$

for all $x, y \in V$, which mean that

$$
D f(x, y)=D f_{1}(x, y)+D f_{2}(x, y)+D f_{3}(x, y)=0
$$

as we desired.

In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation $D f(x, y)=0$ for all $x, y \in V$ by using the fixed point method.

Theorem 2.4. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.1}
\end{equation*}
$$

holds for all $x, y \in V$. If there exists a constant $0<L<1$ such that φ has the property

$$
\begin{equation*}
\varphi(3 x, 3 y) \leq(\sqrt{59778}-243) L \varphi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution mapping $F: V \rightarrow Y$ of $D F(x, y)=0$ such that

$$
\begin{equation*}
\|f(x)-f(0)-F(x)\| \leq \frac{\Phi(x)}{729(1-L)} \tag{2.3}
\end{equation*}
$$

for all $x \in V$ with $F(0)=0$, where $\Phi(x)=\varphi_{e}(0,3 x)+6 \varphi_{e}(0,2 x)+$ $36 \varphi_{e}(x, x)+75 \varphi_{e}(0, x)+486 \varphi_{e}(x,-x)+243 \varphi_{e}(0, x)$. In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty}\left(\frac{f_{o}\left(3^{n} x\right)}{3^{n}}+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i}(90)^{i}}{729^{n}}\left(f_{e}\left(3^{2 n-i} x\right)-f(0)\right)\right) \tag{2.4}
\end{equation*}
$$

for all $x \in V$.
Proof. Let $\tilde{f}: V \rightarrow Y$ be the mapping defined by $\tilde{f}(x):=f(x)-f(0)$. Then $D \tilde{f}(x, y)=D f(x, y)$ for all $x, y \in V$ and $\tilde{f}(0)=0$. Let S be the set of all mappings $g: V \rightarrow Y$ with $g(0)=0$. We introduce a generalized metric on S by

$$
d(g, h)=\inf \left\{K \in \mathbb{R}_{+} \mid\|g(x)-h(x)\| \leq K \Phi(x) \text { for all } x \in V\right\} .
$$

It is easy to show that (S, d) is a generalized complete metric space.
Now we consider the mapping $J: S \rightarrow S$, which is defined by

$$
J g(x):=-\frac{g(9 x)}{1458}-\frac{g(-9 x)}{1458}+\frac{333 g(3 x)}{1458}-\frac{153 g(-3 x)}{1458}
$$

for all $x \in V$. Notice that the equality

$$
J^{n} g(x)=\frac{g_{o}\left(3^{n} x\right)}{3^{n}}+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i}(90)^{i}}{729^{n}} g_{e}\left(3^{2 n-i} x\right)
$$

holds for all $n \in \mathbb{N}$ and $x \in V$. Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| \leq & \frac{1}{1458}\|g(9 x)-h(9 x)\|+\frac{1}{1458}\|g(-9 x)-h(-9 x)\| \\
& +\frac{333}{1458}\|g(3 x)-h(3 x)\|+\frac{153}{1458}\|g(-3 x)-h(-3 x)\| \\
\leq & \frac{\Phi(9 x) K}{729}+\frac{\Phi(3 x) K}{3} \\
\leq & \frac{(\sqrt{59778}-243) K L \Phi(3 x)}{729}+\frac{K \Phi(3 x)}{3} \\
\leq & \left.\frac{(\sqrt{59778}-243)^{2}}{729} K L^{2} \Phi(x)+\frac{\sqrt{59778}-243}{3} K L \Phi(x)\right) \\
\leq & \frac{(\sqrt{59778}-243)^{2}+486(\sqrt{59778}-243)}{729} K L \Phi(x) \\
= & K L \Phi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L. Moreover, by (2.1) we see that

$$
\begin{aligned}
\|\tilde{f}(x)-J \tilde{f}(x)\|= & \frac{1}{729} \| D f_{e}(0,3 x)+6 D f_{e}(0,2 x)+36 D f_{e}(x, x) \\
& +75 D f_{e}(0, x)+486 D f_{o}(x,-x)+243 D f_{o}(0, x) \| \\
\leq & \frac{1}{729}\left(\varphi_{e}(0,3 x)+6 \varphi_{e}(0,2 x)+36 \varphi_{e}(x, x)+75 \varphi_{e}(0, x)\right. \\
& \left.+486 \varphi_{e}(x,-x)+243 \varphi_{e}(0, x)\right) \\
\leq & \frac{\Phi(x)}{729}
\end{aligned}
$$

for all $x \in V$. It means that $d(\tilde{f}, J \tilde{f}) \leq \frac{1}{729}<\infty$ by the definition of d. Therefore according to Theorem 2.1, the sequence $\left\{J^{n} \tilde{f}\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S \mid d(\tilde{f}, g)<$
$\infty\}$, which is represented by (2.4) for all $x \in V$. Notice that

$$
d(\tilde{f}, F) \leq \frac{1}{1-L} d(\tilde{f}, J \tilde{f}) \leq \frac{1}{729(1-L)}
$$

which implies (2.3). By the definition of F, together with (2.1) and (2.2), we have

$$
\begin{aligned}
& \|D F(x, y)\| \\
& =\lim _{n \rightarrow \infty}\left\|D J^{n} \tilde{f}(x, y)\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\frac{D f_{o}\left(3^{n} x, 3^{n} y\right)}{3^{n}}+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 90^{i}}{729^{n}} D f_{e}\left(3^{2 n-i} x, 3^{2 n-i} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{\varphi_{e}\left(3^{n} x, 3^{n} y\right)}{3^{n}}+\frac{1}{729^{n}} \sum_{i=0}^{n}{ }_{n} C_{i} 90^{i} \varphi_{e}\left(3^{2 n-i} x, 3^{2 n-i} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{1}{3^{n}}+\frac{1}{729^{n}} \sum_{i=0}^{n}{ }_{n} C_{i}(\sqrt{59778}-243)^{n-i} L^{n-i} 90^{i}\right) \varphi_{e}\left(3^{n} x, 3^{n} y\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{1}{3^{n}}+\frac{1}{729^{n}}((\sqrt{59778}-243) L+90)^{n}\right) \varphi_{e}\left(3^{n} x, 3^{n} y\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\left(\frac{243}{729}\right)^{n}+\frac{1}{729^{n}}(\sqrt{59778}-243+90)^{n}\right) \varphi_{e}\left(3^{n} x, 3^{n} y\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\left(\frac{\sqrt{59778}+243}{729}\right)^{n}+\left(\frac{\sqrt{59778}+243}{729}\right)^{n}\right) \varphi_{e}\left(3^{n} x, 3^{n} y\right) \\
& \leq 2 \lim _{n \rightarrow \infty}\left(\frac{(\sqrt{59778}+243)(\sqrt{59778}-243)}{729} L^{n} \varphi_{e}(x, y)\right. \\
& =2 \lim _{n \rightarrow \infty} L^{n} \varphi_{e}(x, y) \\
& =0
\end{aligned}
$$

for all $x, y \in V$ i.e., F is a solution of the functional equation $D F(x, y)=$ 0 and $F(0)=0$. Notice that if F is a solution of the functional equation $D F(x, y)=0$ with $F(0)=0$, then the equality

$$
\begin{aligned}
F(x)-J F(x) & =\frac{1}{729}\left(D F_{e}(0,3 x)+6 D F_{e}(0,2 x)+36 D F_{e}(x, x)\right. \\
& \left.+75 D F_{e}(0, x)+486 D F_{o}(x,-x)+243 D F_{o}(0, x)\right)
\end{aligned}
$$

implies that F is a fixed point of J.
Theorem 2.5. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality (2.1) holds for all
$x, y \in V$. If there exists a constant $0<L<1$ such that φ has the property

$$
\begin{equation*}
L \varphi(3 x, 3 y) \geq \frac{729}{\sqrt{2754}-45} \varphi(x, y) \tag{2.5}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution mapping $F: V \rightarrow Y$ of $D F(x, y)=0$ such that

$$
\begin{equation*}
\|f(x)-f(0)-F(x)\| \leq \frac{\Psi(x)}{1-L} \tag{2.6}
\end{equation*}
$$

for all $x \in V$ with $F(0)=0$, where $\Psi(x)$ is given by

$$
\begin{aligned}
\Psi(x):= & \varphi_{e}\left(0, \frac{x}{3}\right)+6 \varphi_{e}\left(0, \frac{2 x}{9}\right)+36 \varphi_{e}\left(\frac{x}{9}, \frac{x}{9}\right)+75 \varphi_{e}\left(0, \frac{x}{9}\right) \\
& +2 \varphi_{e}\left(\frac{-x}{3}, \frac{x}{3}\right)+\varphi_{e}\left(0, \frac{-x}{3}\right) .
\end{aligned}
$$

In particular, F is represented by
$F(x)=\lim _{n \rightarrow \infty}\left(3^{n} f_{o}\left(\frac{x}{3^{n}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 90^{i}(-729)^{n-i}\left(f_{e}\left(\frac{x}{3^{2 n-i}}\right)\right)-f(0)\right)$
for all $x \in V$.
Proof. Let the mapping \tilde{f} and the set S be as in the proof of Theorem 2.3 with a generalized metric d on S given by

$$
d(g, h)=\inf \left\{K \in \mathbb{R}_{+} \mid\|g(x)-h(x)\| \leq K \Psi(x) \text { for all } x \in V\right\} .
$$

Now we consider the mapping $J: S \rightarrow S$ defined by

$$
J g(x):=\frac{1}{2}\left(93 g\left(\frac{x}{3}\right)+87 g\left(\frac{-x}{3}\right)-729 g\left(\frac{x}{9}\right)-729 g\left(\frac{-x}{9}\right)\right)
$$

for all $x \in V$. Notice that the equality

$$
J^{n} g(x)=3^{n} g_{o}\left(\frac{x}{3^{n}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 90^{i}(-729)^{n-i} g_{e}\left(\frac{x}{3^{2 n-i}}\right)
$$

holds for all $n \in \mathbb{N}$ and $x \in V$. Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| \leq & \frac{1}{2}\left(93\left\|g\left(\frac{x}{3}\right)-h\left(\frac{x}{3}\right)\right\|+87\left\|g\left(\frac{-x}{3}\right)-h\left(\frac{-x}{3}\right)\right\|\right. \\
& \left.+729\left\|g\left(\frac{x}{9}\right)-h\left(\frac{x}{9}\right)\right\|+729\left\|g\left(\frac{-x}{9}\right)-h\left(\frac{-x}{9}\right)\right\|\right) \\
\leq & 729 K \Psi\left(\frac{x}{9}\right)+90 K \Psi\left(\frac{x}{3}\right) \\
\leq & L^{2} \frac{(\sqrt{2754}-45)^{2}}{729} K \Psi(x)+\frac{90(\sqrt{2754}-45)}{729} L K \Psi(x) \\
\leq & L K \Psi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L. Moreover, by (2.1) we see that

$$
\begin{aligned}
\|\tilde{f}(x)-J \tilde{f}(x)\|= & \| D f_{e}\left(0, \frac{x}{3}\right)+6 D f_{e}\left(0, \frac{2 x}{9}\right)+36 D f_{e}\left(\frac{x}{9}, \frac{x}{9}\right) \\
& +75 D f_{e}\left(0, \frac{x}{9}\right)+2 D f_{o}\left(\frac{-x}{3}, \frac{x}{3}\right)+D f_{o}\left(0, \frac{-x}{3}\right) \| \\
\leq & \varphi_{e}\left(0, \frac{x}{3}\right)+6 \varphi_{e}\left(0, \frac{2 x}{9}\right)+36 \varphi_{e}\left(\frac{x}{9}, \frac{x}{9}\right)+75 \varphi_{e}\left(0, \frac{x}{9}\right) \\
& +2 \varphi_{e}\left(\frac{-x}{3}, \frac{x}{3}\right)+\varphi_{e}\left(0, \frac{-x}{3}\right) \\
= & \Psi(x)
\end{aligned}
$$

for all $x \in V$. It means that $d(\tilde{f}, J \tilde{f}) \leq 1<\infty$ by the definition of d. Therefore according to Theorem 2.1, the sequence $\left\{J^{n} \tilde{f}\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S \mid d(\tilde{f}, g)<$ $\infty\}$, which is represented by (2.7) for all $x \in V$. Notice that

$$
d(\tilde{f}, F) \leq \frac{1}{1-L} d(\tilde{f}, J \tilde{f}) \leq \frac{1}{1-L}
$$

which implies (2.6). By the definition of F, together with (2.1) and (2.5), we have

$$
\begin{aligned}
& \|D F(x, y)\| \\
& =\lim _{n \rightarrow \infty}\left\|D J^{n} f(x, y)\right\| \\
& =\lim _{n \rightarrow \infty}\left\|3^{n} f_{o}\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 90^{n-i}(-729)^{i} f_{e}\left(\frac{x}{3^{2 n-i}}, \frac{y}{3^{2 n-i}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(3^{n} \varphi_{e}\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 729^{n-i} 90^{i} \varphi_{e}\left(\frac{x}{3^{2 n-i}}, \frac{y}{3^{2 n-i}}\right)\right) \\
& \leq \lim _{n \rightarrow \infty}\left(3^{n}+\sum_{i=0}^{n}{ }_{n} C_{i} 90^{i}(\sqrt{2754}-45)^{n-i} L^{n-i}\right) \varphi_{e}\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right) \\
& \leq \lim _{n \rightarrow \infty}\left(3^{n}+((\sqrt{2754}-45)+90)^{n}\right) \varphi_{e}\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right) \\
& \left.\left.\leq \lim _{n \rightarrow \infty}((\sqrt{2754}+45))^{n}+(\sqrt{2754}+45)\right)^{n}\right) \varphi_{e}\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right) \\
& \leq 2 \lim _{n \rightarrow \infty} L^{n} \frac{\left.((\sqrt{2754}+45))^{n}(\sqrt{2754}-45)\right)^{n}}{729^{n}} \varphi_{e}(x, y) \\
& \leq 2 \lim _{n \rightarrow \infty} L^{n} \varphi_{e}(x, y) \\
& =0
\end{aligned}
$$

for all $x, y \in V$ i.e., F is a solution of the functional equation $D F(x, y)=$ 0 with $F(0)=0$. Notice that if F is a solution of the functional equation $D F(x, y)=0$ with $F(0)=0$, then the equality $F(x)-J F(x)=$ $D F_{e}\left(0, \frac{x}{3}\right)+6 D F_{e}\left(0, \frac{2 x}{9}\right)+36 D F_{e}\left(\frac{x}{9}, \frac{x}{9}\right)+75 D F_{e}\left(0, \frac{x}{9}\right)+2 D F_{o}\left(\frac{-x}{3}, \frac{x}{3}\right)+$ $D F_{o}\left(0, \frac{-x}{3}\right)$ implies that F is a fixed point of J.

References

[1] J. Baker, A general functional equation and its stability, Proc. Amer. Math. Soc., 133 (2005), no. 6, 1657-1664.
[2] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), no. 1, Art. 4.
[3] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform., 41 (2003), 25-48.
[4] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitäet, Graz, Graz, Austria, 346 (2004), 43-52.
[5] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[7] A. K. Hassan, J. R. Lee, and C. Park, Non-Archimedean stability of an $A Q Q$ functional equation, J. Comput. Anal. Appl., 14 (2012), 211-227.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222-224.
[9] S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadratic and quartic type functional equation, J. Chungcheong Math. Soc., 32 (2019), 337-347.
[10] Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic-quartic functional equation, East Asian Math. J., 35 (2019), 559-568.
[11] Y.-H. Lee, A fixed point approach to the stability of an additive-cubic-quartic functional equation, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 26 (2019), 267-276.
[12] Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic functional equation, Korean J. Math., 27 (2019), 343-355.
[13] Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc., 128 (2000), 1361-1369.
[14] Y.-H. Lee and S.-M. Jung, A fixed point approach to the stability of an additive-quadratic-cubic-quartic functional equation, J. Function Spaces, (2016), Art. ID 8746728, 7 pages.
[15] Y.-H. Lee and S.-M. Jung, A fixed point approach to the stability of a general quartic functional equation, J. Math. Computer Sci., 20 (2020), 207-215.
[16] M. Mohamadi, Y. J. Cho, C. Park, P. Vetro, and R. Saadati, Random stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl., 2010 (2010), Art. ID 754210, 18 pages.
[17] C. Park, Fuzzy stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl., 2010 (2010), Art. ID 253040, 22 pages
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[19] I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979 (in Romanian).
[20] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.

Department of Mathematics Education
Gongju National University of Education
Gongju 32553, Korea
lyhmzi@gjue.gjue.ac.kr

[^0]: Received October 02, 2019; Accepted Jaunary 21, 2020.
 2010 Mathematics Subject Classification: Primary 39B82, 39B52.
 Key words and phrases: stability, additive-quadratic-quartic mapping, additive-quadratic-quartic functional equation.

