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A FIXED POINT APPROACH TO STABILITY OF
ADDITIVE FUNCTIONAL INEQUALITIES IN FUZZY

NORMED SPACES

Chang Il Kim* and Se Won Park**

Abstract. In this paper, we investigate the solution of the follow-
ing functional inequality

N(f(x) + f(y) + f(z), t) ≥ N(f(x + y + z), mt)

for some fixed real number m with 1
3

< m ≤ 1 and using the fixed
point method, we prove the generalized Hyers-Ulam stability for it
in fuzzy Banach spaces.

1. Introduction and preliminaries

The concept of a fuzzy norm on a linear space was introduced by
Katsaras [12] in 1984. Later, Cheng and Mordeson [3] gave a new def-
inition of a fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [14]. In this paper, we use the
definition of fuzzy normed spaces given in [2], [15], and [17].

Definition 1.1. Let X be a linear space. A function N : X ×R −→
[0, 1] is called a fuzzy norm on X if for any x, y ∈ X and any s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function on R and limt→∞N(x, t) = 1;
(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X, N) is called a fuzzy normed space.
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Let (X,N) be a fuzzy normed space. A sequence {xn} in X is
said to be convergent in (X, N) if there exists an x ∈ X such that
limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit
of the sequence {xn} in X and one denotes it by N − limn→∞ xn = x.
A sequence {xn} in X is said to be Cauchy in (X,N) if for any ε > 0,
there is an m ∈ N such that for any n ≥ m and any positive integer p,
N(xn+p − xn, t) > 1− ε for all t > 0.

It is well known that every convergent sequence in a fuzzy normed
space is Cauchy. A fuzzy normed space is said to be complete if each
Cauchy sequence in it is convergent and a complete fuzzy normed space
is called a fuzzy Banach space.

In 1940, Ulam proposed the following stability problem (cf. [24]):
“Let G1 be a group and G2 a metric group with the metric d. Given a

constant δ > 0, does there exist a constant c > 0 such that if a mapping
f : G1 −→ G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then
there exists a unique homomorphism h : G1 −→ G2 with d(f(x), h(x)) <
δ for all x ∈ G1?”
In the next year, Hyers [11] gave a partial solution of Ulam,s problem
for the case of approximate additive mappings. Subsequently, his result
was generalized by Aoki ([1]) for additive mappings, and by Rassias [22]
for linear mappings, to consider the stability problem with unbounded
Cauchy differences. A generalization of the Rassias theorem was ob-
tained by Gǎvruta [8] by replacing the unbounded Cauchy difference by
a general control function in the spirit of the Rassias’ approach. Dur-
ing the last decades, the stability problems of functional equations have
been extensively investigated by a number of mathematicians (see [4],
[5], and [18]).

In 2008, Mirmostafaee and Moslehian [16], [17] used the definition
of a fuzzy norm in [2] to obtain a fuzzy version of the stability for the
Cauchy functional equation

(1.1) f(x + y) = f(x) + f(y)

and the quadratic functional equation

(1.2) f(x + y) + f(x− y) = 2f(x) + 2f(y).

Glányi [9] and Rätz [23] showed that if a mapping f : X −→ Y
satisfies the following functional inequality

(1.3) ‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖,
then f satisfies the Jordan-Von Neumann functional equation

2f(x) + 2f(y)− f(xy−1) = f(xy).
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for an abelian group X divisible by 2 into an inner product space Y .
Glányi [10] and Fechner [7] proved the Hyers-Ulam stability of (1.3).
Park, Cho, and Han [21] proved the generalized Hyers-Ulam stability of
the following functional inequality associated with the following Jordan-
von Neumann type additive functional equations:

(1.4) ‖f(x) + f(y) + f(z)‖ ≤ ‖f(x + y + z)‖.
and Kim, Jun, and Son [13] proved the generalized Hyers-Ulam stability
of the Jensen functional inequality in p-Banach spaces.

Banachs contraction principle is one of the pivotal results of analy-
sis. It is widely considered as the source of the metric fixed point theory.
Also, its significance lies in its vast applicability in a number of branches
of mathematics. In particular, Diaz and Margolis [6] presented the fol-
lowing definition and the fixed point theorem in a generalized complete
metric space.

Definition 1.2. Let X be a non-empty set. Then a mapping
d : X2 −→ [0,∞] is called a generalized metric on X if d satisfies the
following conditions:

(D1) d(x, y) = 0 if and only if x = y,
(D2) d(x, y) = d(y, x), and
(D3) d(x, y) ≤ d(x, z) + d(z, y).

In case, (X, d) is called a generalized metric space.

Theorem 1.3. [6] Let (X, d) be a complete generalized metric space
and let J : X −→ X be a strictly contractive mapping with some Lips-
chitz constant L with 0 < L < 1. Then for each given element x ∈ X,
either d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there exists
a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) < ∞} ;

(4) d(y, y∗) ≤ 1
1− L

d(y, Jy) for all y ∈ Y .

Using the fixed point Theorem, Park [20] proved the generalized
Hyers-Ulam stability of the Cauchy additive functional inequality (1.4)
in fuzzy Banach spaces if f is an odd mapping.

In this paper, we investigate the solution of the following functional
inequality
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(1.5) N(f(x) + f(y) + f(z), t) ≥ N(f(x + y + z), mt)

for some fixed positive real number m with 1
3 < m ≤ 1 and prove the

generalized Hyers-Ulam stability for it in fuzzy Banach spaces in which
f need not be odd.

Throughout this paper, we assume that X is a linear space, (Y, N) is
a fuzzy Banach space, and (Z, N ′) is a fuzzy normed space.

2. Solutions and fuzzy stability of (1.5)

In this section, we prove the generalized Hyers-Ulam stability of func-
tional equation (1.5) in fuzzy Banach spaces. We start with the solution
of (1.5).

Theorem 2.1. A mapping f : X −→ Y saisfies (1.5) if and omly if
f is an additive mapping.

Proof. Suppose that f satisfies (1.5). Setting x = y = z = 0 in (1.5),
by (N3), we have

N(f(0),mt) ≤ N(3f(0), t) = N
(
f(0),

t

3

)

for all t > 0 and since m > 1
3 , by (N5), N(f(0), t

3) ≤ N(f(0),mt) for all
t > 0. Hence we have

N(f(0), mt) = N
(
f(0),

t

3

)

for all t > 0. By induction, we have

(2.1) N(f(0),mnt) = N
(
f(0),

t

3n

)

for all t > 0 and all n ∈ N. Letting t = 3nt in (2.1), we have

(2.2) N(f(0), t) = N(f(0), (3m)nt)

for all t > 0, n ∈ N and by(N5), we have

(2.3) N(f(0), t) = lim
n→∞N(f(0), (3m)nt) = 1

for all t > 0. Hence by (N2), we have

(2.4) f(0) = 0.

Putting y = −x and z = 0 in (1.5), by (2.4), we have N(f(x) +
f(−x), t) ≥ N(f(0), mt) = 1 for all t ∈ Y and so by (N2), we have

(2.5) f(−x) = −f(x)
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for all x ∈ X. Replacing z by −x− y in (1.5), by (2.5), we have

N(f(x)+f(y)+f(−x,−y), t) = N(f(x)+f(y)−f(x+y), t) ≥ N(0,mt) = 1

for all x, y ∈ X, t > 0 and hence by (N2), we have

f(x + y) = f(x) + f(y)

for all x, y ∈ X. Thus f is an additive mapping. For the converse,
suppose that f is an additive mapping. Then

f(x + y + z) = f(x) + f(y) + f(z)

for all x, y, z ∈ X and since 1
3 < m ≤ 1, we have (1.5).

Now, we will prove the generalized Hyers-Ulam stability of (1.5) in
fuzzy Banach spaces.

Theorem 2.2. Assume that φ : X3 −→ [0,∞) is a function such that

(2.6) N ′(φ(2x, 2y, 2z), t) ≥ N ′(2Lφ(x, y, z), t)

for all x, y, z ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y
be a mapping such that f(0) = 0 and
(2.7)
N(f(x)+f(y)+f(z), t) ≥ min{N(f(x+y+z),mt), N ′(φ(x, y, z), (1−m)t)}
for all x, y, z ∈ X, t > 0 and some fixed real number m with 1

3 < m ≤ 1.
Then there exists a unique additive mapping A : X −→ Y such that

(2.8) N
(
f(x)−A(x),

1
1− L

t
)
≥ Ψ(x, t)

for all x ∈ X and all t > 0, where

Ψ(x, t) = min
{

N ′(φ(x,−x, 0),
2(1−m)

3
t), N ′(φ(2x,−x,−x),

2(1−m)
3

t)
}

.

Proof. If m = 1, then clearly, one has the results. Suppose that
1
3 < m < 1.

Letting y = −x and z = 0 in (2.7), by (N2), we have

N(f(x) + f(−x), t)

≥ min{N(0,mt), N ′(φ(x,−x, 0), (1−m)t)}
= N ′(φ(x,−x, 0), (1−m)t)

(2.9)

for all x ∈ X and all t > 0. Letting x = 2x and y = z = −x in (2.7), we
have

(2.10) N(f(2x) + 2f(−x), t) ≥ N ′(φ(2x,−x,−x), (1−m)t).
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By (2.9) and (2.10), we have

N
(
f(x)− f(2x)

2
, t

)

≥ min
{

N(f(x) + f(−x),
2
3
t), N(f(2x) + 2f(−x),

2
3
t)

}

≥ Ψ(x, t)

(2.11)

for all x ∈ X and all t > 0.
Consider the set S = {g | g : X −→ Y } and the generalized metric d

on S defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ Ψ(x, t), ∀x ∈ X,∀t > 0}.
Then (S, d) is a complete metric space(see [19]). Define a mapping
J : S −→ S by Jg(x) = 1

2g(2x) for all x ∈ X and all g ∈ S. Let g, h ∈ S
and d(g, h) ≤ c for some c ∈ [0,∞). Then by (2.6), we have

N(Jg(x)− Jh(x), cLt)

= N
(1

2
g(2x)− 1

2
h(2x), cLt

)
= N(g(2x)− h(2x), 2cLt)

≥ min
{

N ′(φ(2x,−2x, 0),
4(1−m)L

3
t), N ′(φ(4x,−2x,−2x),

4(1−m)L
3

t)
}

≥ Ψ(x, t)

for all x ∈ X and all t > 0. Hence N(Jg(x)− Jh(x), cLt) ≥ Ψ(x, t) for
all x ∈ X, t > 0 and thus d(Jg, Jh) ≤ Ld(g, h). Moreover, by (2.11),
we have d(f, Jf) ≤ 1 < ∞. By Theorem 1.3, there exists a mapping
A : X −→ Y which is a fixed point of J such that d(Jnf, A) → 0 as
n →∞. That is,

(2.12) A(x) = N − lim
n→∞

f(2nx)
2n

for all x ∈ X. Replacing x, y, z by 2nx, 2ny, 2nz in (2.7), respectively,
by (2.6) and (N4), we have

N(f(2nx) + f(2ny) + f(2nz), 2nt)

≥ min{N(f(2n(x + y + z)), 2nmt), N ′(Lnφ(x, y, z), (1−m)t)}(2.13)

for all x, y, z ∈ X and all n ∈ N. Letting n → ∞ in (2.13), A is a
solution of (1.5) and so by Theorem 2.1, A is an additive mapping.
Since d(f, Jf) ≤ 1, by Theorem 1.3, we have (2.8).
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Now, we show the uniqueness of A. Let A0 be another additive
mapping with (2.8). Then for any positive integer n,

A(2nx) =
A(2nx)

2n
, A0(2nx) =

A0(2nx)
2n

for all x ∈ X. Hence by (2.8), (N3) and (N4), we have

N(A(x)−A0(x), t)

= N(A(2nx)−A0(2nx), 2nt)

≥ min{N(A(2nx)− f(2nx), 2n−1t), N(A0(2nx)− f(2nx), 2n−1t)}

≥ min
{

N ′(Lnφ(x,−x, 0),
(1− L)(1−m)

3
t),

N ′(Lnφ(2x,−x,−x),
(1− L)(1−m)

3
t)

}

for all x ∈ X, t > 0, and all n ∈ N. Hence, letting n →∞ in the above
inequality, we have A(x) = A0(x) for all x ∈ X.

Related with Theorem 2.2, we can also have the following theorem.
And the proof is similar to that of Theorem 2.2.

Theorem 2.3. Assume that φ : X3 −→ [0,∞) is a function such that

(2.14) N ′
(
φ
(x

2
,
y

2
,
z

2

)
, t

)
≥ N ′

(L

2
φ(x, y, z), t

)

for all x, y, z ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y be
a mapping with f(0) = 0 and (2.7). Then there exists a unique additive
mapping A : X −→ Y such that

(2.15) N
(
f(x)−A(x),

1
1− L

t
)
≥ Ψ(x, t)

for all x ∈ X and all t > 0, where

Ψ(x, t) = min
{

N ′(φ(x,−x, 0),
2(1−m)

3
t), N ′(φ(2x,−x,−x),

2(1−m)
3

t)
}

.

Proof. Letting y = −x and z = 0 in (2.7), by (N2), we have

N(f(x) + f(−x), t)

≥ min{N(0,mt), N ′(φ(x,−x, 0), (1−m)t)}
= N ′(φ(x,−x, 0), (1−m)t)

(2.16)
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for all x ∈ X, t > 0 and letting y = z = −x
2 in (2.7), by (N5), we have

N
(
f(x) + 2f

(
− x

2

)
, t

)
≥ N ′

(
φ
(
x,−x

2
,−x

2

)
, (1−m)t

)

≥ N ′
(
φ(2x,−x,−x),

2(1−m)
L

t
)

≥ N ′(φ(2x,−x,−x), 2(1−m)t),

(2.17)

because L < 1. By (N5), (2.16), and (2.17), we have

N
(
f(x)− 2f

(x

2

)
, t

)

≥ min
{

N(f(−x) + 2f(
x

2
),

1
3
t), N(f(x) + f(−x),

2
3
t)

}
≥ Ψ(x, t)

(2.18)

for all x ∈ X and all t > 0.
Consider the set S = {g | g : X −→ Y } and the generalized metric d

on S defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ Ψ(x, t), ∀x ∈ X,∀t > 0}.
Then (S, d) is a complete metric space(see [19]). Define a mapping
J : S −→ S by Jg(x) = 2g(1

2x) for all x ∈ X and all g ∈ S. Let g, h ∈ S
and d(g, h) ≤ c for some c ∈ [0,∞). Then by (2.14), we have

N(Jg(x)− Jh(x), cLt)

= N
(
2g

(1
2
x
)
− 2h

(1
2
x
)
, cLt

)
≥ Ψ

(1
2
x,

L

2
t
)
≥ Ψ(x, t)

for all x ∈ X and all t > 0. Hence N(Jg(x) − Jh(x), cLt) ≥ Ψ(x, t)
for all x ∈ X, t > 0 and thus d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S.
Moreover, by (2.18), we have d(f, Jf) ≤ 1 < ∞. The rest of the proof
is similar to Theorem 2.2.

As examples of φ(x, y, z) and N ′(x, t) in Theorem 2.2 and Theorem
2.3, we can take φ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p) and

N ′(x, t) =





t

t + k|x| , if t > 0

0, if t ≤ 0

for all x ∈ R and all t > 0, where k = 1, 2. Then we can formulate the
following corollary
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Corollary 2.4. Let X be a normed space and (Y, N) a fuzzy Banach
space. Let f : X −→ Y be a mapping such that

N(f(x) + f(y) + f(z), t)

≥ min
{

N(f(x + y + z),mt),
(1−m)t

(1−m)t + kε(‖x‖p + ‖y‖p + ‖z‖p)

}

(2.19)

for all x, y, z ∈ X, t > 0, a fixed real number p with p 6= 1, and some
fixed real number m with 1

3 < m ≤ 1. Then there is a unique additive
mapping A : X −→ Y such that

N(f(x)−A(x), t)

≥





(2− 2p)(1−m)t
(2− 2p)(1−m)t + 3(2 + 2p)εk‖x‖p

, if 0 < p < 1,

(2p − 2)(1−m)t
(2p − 2)(1−m)t + 3× 2p−1(2 + 2p)εk‖x‖p

, if 1 < p

for all x ∈ X and all t > 0.

We remark that the functional inequality (1.5) is not stable for p = 1
in Corollary 2.4. The following example shows that the (2.19) is not
stable for p = 1, especially in the case of k = 1, ε = 48, and m = 1

2 .

Example 2.5. Let s : R −→ R be a mapping defined by

s(x) =





x, if |x| < 1
1, if x > 1
−1, if x < −1

and define a mapping f : R −→ R by f(x) =
∑∞

n=0
s(2nx)

2n . Let

N(x, t) = N ′(x, t) =

{
t

t+|x| , if t > 0

0, if t ≤ 0.

for all x ∈ X. Let φ(x, y, z) = 48(|x|+ |y|+ |z|).
We will show that (2.19) holds, but there do not exist an additive

mapping A : R −→ R and a positive constant K such that

(2.20) |A(x)− f(x)| ≤ K|x|
for all x ∈ R.
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Proof. Now, we claim that for any x, y, z ∈ X

(2.21) |f(x) + f(y) + f(z)| ≤ 2|f(x + y + z)|
or

(2.22) |f(x) + f(y) + f(z)| ≤ φ(x, y, z).

Take any x, y, z ∈ X. Suppose that (2.21) does not hold. Then we have

(2.23) |f(x) + f(y) + f(z)| > 2|f(x + y + z)|.
First, suppose that |x|+ |y|+ |z| ≥ 1

4 . Since |f(x)| ≤ 2, we have

|f(x) + f(y) + f(z)| ≤ 24(|x|+ |y|+ |z|) ≤ φ(x, y, z).

Suppose that |x|+ |y|+ |z| < 1
4 . Then there is a non-negative integer k

such that
1

2k+3
≤ |x|+ |y|+ |z| < 1

2k+2
.

Then we have
2k|x| < 1

4
, 2k|y| < 1

4
, 2k|z| < 1

4
and

2k|x + y + z| ≤ 2k(|x|+ |y|+ |z|) <
1
4
.

For any n = 0, 1, 2, · · ·, k, we have

s(2nx) + s(2ny) + s(2nz) = s(2n(x + y + z))

and so by (2.23), we get

|f(x) + f(y) + f(z)|

≤
∣∣∣

k∑

n=0

s(2nx) + s(2ny) + s(2nz)
2n

∣∣∣ +
∣∣∣

∞∑

n=k+1

s(2nx) + s(2ny) + s(2nz)
2n

∣∣∣

≤
∣∣∣

k∑

n=0

s(2n(x + y + z))
2n

∣∣∣ +
3
2k

≤ |f(x + y + z)|+ 24(|x|+ |y|+ |z|)
≤ 1

2
|f(x) + f(y) + f(z)|+ 24(|x|+ |y|+ |z|).

Thus we have (2.22). By (2.21) and (2.22), we have

N(f(x) + f(y) + f(z), t) ≥ N
(
f(x + y + z),

1
2
t
)

or
N(f(x) + f(y) + f(z), t) ≥ N ′

(
φ(x, y, z), t

)
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for all x, y, z ∈ X and all t > 0. Hence we have (2.19).
Suppose that there exists an additive mapping A : R −→ R and a

positive constant K with (2.20). Since |f(x)| ≤ 2,

−K|x| − 2 ≤ A(x) ≤ K|x|+ 2

for all x ∈ X and since A is additive,

−K|x| − 2
n
≤ A(x) ≤ K|x|+ 2

n

for all x ∈ X and all n ∈ N. Hence we have |A(x)| ≤ K|x| for all x ∈ X
and so, by (2.20), we have |f(x)| ≤ 2K|x| for all x ∈ X. Take a positive
integer l such that l > 2K, and pick x ∈ R with 0 < 2lx < 1. Then

f(x) =
∞∑

n=0

s(2nx)
2n

>
l−1∑

n=0

s(2nx)
2n

=
l−1∑

n=0

x = lx > 2Kx

which is a contradiction.
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