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A FIXED POINT APPROACH TO THE STABILITY OF THE

GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION

OF DEGREE 2

Sun-Sook Jin and Yang-Hi Lee

Abstract. In this paper, we investigate a stability of the functional
equation

3∑

i=0

3Ci(−1)3−if(ix+ y) = 0

by using the fixed point theory in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, S. M. Ulam [24] raised a question concerning the stability of homo-
morphisms: Given a group G1, a metric group G2 with the metric d(·, ·), and a
positive number ε, does there exist a δ > 0 such that if a mapping f : G1 → G2

satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1, then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? When this problem has a solution, we say that the homomor-
phisms from G1 to G2 are stable. In the next year, D. H. Hyers [6] gave a
partial solution of Ulam’s problem for the case of approximate additive map-
pings under the assumption that G1 and G2 are Banach spaces. Hyers’ result
was generalized by T. Aoki [1] for additive mappings, and by Th. M. Rassias
[22] for linear mappings, by considering the stability problem with unbounded
Cauchy differences. The paper of Th. M. Rassias had much influence in the
development of stability problems. During the last decades, the stability prob-
lems of functional equations have been extensively investigated by a number of
mathematicians (see [5], [10]-[19]).
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Almost all subsequent proofs, in this very active area, have used Hyers’
method. Namely, the solution F of a functional equation, starting from the
given mapping f , is explicitly constructed by the formulae

F (x) = lim
n→∞

1

2n
f(2nx) or F (x) = lim

n→∞

2nf(
x

2n
).

We call it a direct method. In 2003, L. Cădariu and V. Radu [2] observed that
the existence of the solution F of a functional equation and the estimation of
the difference with the given mapping f can be obtained from the fixed point
theory alternative. They applied this method to prove stability theorems of
Jensen’s functional equation:

(1.1) 2f

(

x+ y

2

)

− f(x)− f(y) = 0.

This method is called a fixed point method. In 2005, L. Cădariu [3] obtained a
stability of the quadratic functional equation:

(1.2) f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0

by using the fixed point method. If we consider the functions f1, f2 : R → R de-
fined by f1(x) = ax+b and f2(x) = ax2, where a and b are real constants, then
f1 satisfies the equation (1.1) and f2 satisfies the equation (1.2), respectively.
Now we consider the functional equation

(1.3)

3
∑

i=0

3Ci(−1)3−if(ix+ y) = 0

which is called the generalized polynomial functional equation of degree 2. The
function f : R → R defined by f(x) = ax2 + bx + c satisfies this functional
equation. We call a solution of (1.3) a general quadratic mapping. On the
other hand, a solution of (1.1) with the condition f(0) = 0 is called an additive

mapping and a solution of (1.2) a quadratic mapping, respectively. In [14], Lee
obtained a stability of the functional equation (1.3) by handling the odd part
and the even part of the given mapping f , respectively. In the processing,
Lee needed to take an additive mapping A which is close to the odd part
f(x)−f(−x)

2 of f and a quadratic mapping Q which is approximate to the even

part f(x)+f(−x)
2 −f(0) of it, and then combining A and Q to prove the existence

of a general quadratic mapping F which is close to the given mapping f .
In this paper, we will prove the stability of a generalized polynomial func-

tional equation of degree 2 (1.3) by using the fixed point theory. In the previous
results of stability problems of (1.3), as we mentioned above, we get a solution
by using the direct method to the odd part and even part, respectively. Instead
of splitting the given mapping f : X → Y into two parts, in this paper, we can
take the desired solution F at once. Precisely, we introduce a strictly contrac-
tive mapping with Liptshitz constant 0 < L < 1. Using the fixed point theory
in the sense of L. Cădariu and V. Radu, together with suitable conditions, we
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can show that the contractive mapping has a fixed point. Actually the fixed
point F becomes the precise solution of the functional equation (1.3). Recently,
using such an idea, the authors and S.-M. Jung have proved several kinds of
stability results of functional equations (see [7]-[9], [20], [21]). In Section 2, we
consider the fundamental result in the fixed point theory and construct some
strictly contractive self-mappings. In Section 3, we prove several stability re-
sults of the functional equation (1.3) using the fixed point theory (see Theorem
3.2, Theorem 3.3, Theorem 3.4, and Theorem 3.5). In Section 4, we use the
results in the previous sections to get a stability of Jensen’s functional equation
(1.1) and that of the quadratic functional equation (1.2), respectively.

2. Preliminaries

We recall the fundamental result in the fixed point theory.

Theorem 2.1 ([4] or [23]). Suppose that a complete generalized metric space

(X, d), which means that the metric d may assume infinite values, and a strictly

contractive mapping A : X → X with the Lipschitz constant 0 < L < 1 are

given. Then, for each given element x ∈ X, either

d(Anx,An+1x) = +∞, ∀n ∈ N ∪ {0}

or there exists a nonnegative integer k such that:
(1) d(Anx,An+1x) < +∞ for all n ≥ k;
(2) the sequence {Anx} is convergent to a fixed point y∗ of A;
(3) y∗ is the unique fixed point of A in Y := {y ∈ X, d(Akx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y,Ay) for all y ∈ Y.

Throughout this paper, let V be a (real or complex) linear space and Y
a Banach space. For a mapping ϕ : (V \{0})2 → [0,∞), we will introduce a
generalized metric dϕ on the set S := {g : V → Y | g(0) = 0} by following

dϕ(g, h) := inf
{

K ∈ R
+
∣

∣ ‖g(x)− h(x)‖ ≤ K
(

ϕ(x,−x) + ϕ(−x, x)
)

for all x ∈ V \{0}
}

for g, h ∈ S. It is easy to see that (S, dϕ) is complete.

Lemma 2.2. Let 0 < L < 1 and let ϕ, ϕ̃ : (V \{0})2 → [0,∞) satisfy

(2.1) ϕ(2x, 2y) ≤ 2Lϕ(x, y),

(2.2) Lϕ̃(2x, 2y) ≥ 4ϕ̃(x, y)

for all x, y ∈ V \{0}, respectively. Consider the mappings A, Ã : S → S defined

by

Ag(x) :=
g(2x)− g(−2x)

4
+
g(2x) + g(−2x)

8
,

Ãg(x) := g
(x

2

)

− g
(

−
x

2

)

+ 2
(

g
(x

2

)

+ g
(

−
x

2

))
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for all g ∈ S and x ∈ V . Then A and Ã are strictly contractive self mappings

of S with the Lipschitz constant L with respect to the generalized metric dϕ and

dϕ̃, respectively.

Proof. By the induction on n ∈ N, we get

Ang(x) =
g (2nx)− g (−2nx)

2n+1
+
g (2nx) + g (−2nx)

2 · 4n
,

Ãng(x) = 2n−1
(

g
( x

2n

)

− g
(

−
x

2n

))

+
4n

2

(

g
( x

2n

)

+ g
(

−
x

2n

))

for all x ∈ V. For any g, h ∈ S, let dϕ(g, h) < K. Then

‖Ag(x)−Ah(x)‖ ≤
3

8

∥

∥g(2x)− h(2x)
∥

∥+
1

8

∥

∥g(−2x)− h(−2x)
∥

∥

≤
1

2
K (ϕ(2x,−2x) + ϕ(−2x, 2x))

≤ LK (ϕ(x,−x) + ϕ(−x, x))

for all x ∈ V \{0}. This implies that

dϕ(Ag,Ah) ≤ LK

as well as

dϕ(Ag,Ah) ≤ Ldϕ(g, h)

for all g, h ∈ S. On the other hand, if dϕ̃(g, h) < K, then

‖Ãg(x)− Ãh(x)‖ ≤ 3
∥

∥

∥
g
(x

2

)

− h
(x

2

) ∥

∥

∥
+
∥

∥

∥
g
(

−
x

2

)

− h
(

−
x

2

)∥

∥

∥

≤ 4K
(

ϕ̃
(x

2
,−

x

2

)

+ ϕ̃
(

−
x

2
,
x

2

))

≤ LK (ϕ̃(x,−x) + ϕ̃(−x, x))

for all x ∈ V \{0}. So we also have

dϕ̃(Ãg, Ãh) ≤ Ldϕ̃(g, h)

for all g, h ∈ S. �

3. The stability of Eq.(1.3)

In this section, we consider stability results of the functional equation (1.3).
For a given mapping f : V → Y , we use the following abbreviation

Df(x, y) :=
3
∑

i=0

3Ci(−1)3−if(ix+ y)

for all x, y ∈ V .

Lemma 3.1. If f : V → Y is a mapping such that Df(x, y) = 0 for all

x, y ∈ V \{0}, then f is a general quadratic mapping.
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Proof. Notice that we get

3Df(x, 0) = −Df(x, x) +Df(2x,−2x)− 3Df(x,−x)−Df(x,−2x)

= 0

for all x ∈ V \ {0}. Moreover, we have

Df(0, y) =

3
∑

i=0

3Ci(−1)3−if(y) = 0

for all y ∈ V . So we can say that Df(x, y) = 0 for all x, y ∈ V . �

Now we can prove the stability of the functional equation Df ≡ 0 using the
fixed point theory.

Theorem 3.2. Let ϕ : (V \{0})2 → [0,∞) satisfy the condition (2.1) for given

0 < L < 1 and let f : V → Y . If

(3.1) ‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V \{0}, then there exists a unique general quadratic mapping

F : V → Y such that

(3.2) ‖f(x)− F (x)‖ ≤
3

8(1− L)
(ϕ(x,−x) + ϕ(−x, x))

for all x ∈ V \{0}. In particular, the mapping F is represented by

(3.3) F (x) = lim
n→∞

(

f(2nx) + f(−2nx)

2 · 4n
+
f(2nx)− f(−2nx)

2n+1

)

+ f(0)

for all x ∈ V . Moreover, if 0 < L < 1
2 and ϕ is continuous, then f ≡ F , i.e.,

f is itself a general quadratic mapping.

Proof. Consider the mapping f̃ : V → Y such that f̃(x) = f(x) − f(0) for all

x ∈ V . Then f̃(0) = 0 and

Df̃(x, y) = Df(x, y)

for all x, y ∈ V \{0}. Notice that, if we consider the mapping A in Lemma 2.2,
then we have

‖f̃(x)−Af̃(x)‖ =
1

8

∥

∥

∥
−3Df̃(x,−x)−Df̃(−x, x)

∥

∥

∥

≤
3

8
(ϕ(x,−x) + ϕ(−x, x))

for all x ∈ V \{0}, i.e., dϕ

(

f̃ , Af̃
)

≤ 3
8 <∞. By Lemma 2.2, this implies that

dϕ

(

Anf̃ , An+1f̃
)

<∞
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for all n ≥ 0. So we can apply (2) and (3) of Theorem 2.1 to get a unique fixed

point F̃ : V → Y of the strictly contractive mapping A, which is defined by

(3.4) F̃ (x) := lim
n→∞

Anf̃(x)= lim
n→∞

(

f̃(2nx)+f̃(−2nx)

2 · 4n
+
f̃(2nx)−f̃(−2nx)

2n+1

)

for all x ∈ V . Since

dϕ(f̃ , F̃ ) ≤
1

1− L
dϕ(f̃ , Af̃) ≤

3

8(1− L)

we have

(3.5) ‖F̃ (x)− f̃(x)‖ ≤
3

8(1− L)
(ϕ(x,−x) + ϕ(−x, x))

for all x ∈ V \{0}. Replacing x by 2nx and y by 2ny in (3.1), we obtain

‖DAnf̃(x, y)‖ ≤
1

2n+1

(∥

∥

∥
Df̃(2nx, 2ny)

∥

∥

∥
+
∥

∥

∥
Df̃(−2nx,−, 2ny)

∥

∥

∥

)

+
1

2 · 4n

(
∥

∥

∥
Df̃(2nx, 2ny)

∥

∥

∥
+
∥

∥

∥
Df̃(−2nx,−2ny)

∥

∥

∥

)

≤

(

1

2n+1
+

1

2 · 4n

)

(ϕ(2nx, 2ny) + ϕ(−2nx,−2ny))

≤

(

1

2n+1
+

1

2 · 4n

)

2nLn (ϕ(x, y) + ϕ(−x,−y)) .

The right hand side tends to 0 as n → ∞, since 0 < L < 1. This implies that
DF̃ (x, y) = 0 for all x, y ∈ V \{0}. From Lemma 3.1, we also have

DF̃ (x, y) = 0

for all x, y ∈ V . Put F = F̃ + f(0). Then (3.2) and (3.3) follow from (3.5) and
(3.4), respectively. Now let 0 < L < 1

2 and ϕ be continuous. Then we get

lim
n→∞

ϕ((a · 2n+b)x, (c · 2n+d)y) ≤ lim
n→∞

(

(2L)nϕ

(

a · 2n + b

2n
x,
c · 2n + d

2n
y

))

= 0 · ϕ(ax, cy) = 0

for all x, y ∈ V \{0} and for any fixed integers a, b, c, d with a, c 6= 0. Therefore,
we obtain

3‖f(x)− F (x)‖ ≤ lim
n→∞

(

‖Df ((2n + 1)x,−2nx)−DF ((2n + 1)x,−2nx)‖

+
∥

∥(F − f)
((

2n+1 + 3
)

x
)∥

∥+ 3 ‖(f − F ) ((2n + 2)x)‖

+ ‖(f − F ) (−2nx)‖
)

≤ lim
n→∞

ϕ ((2n + 1)x,−2nx)

+
3

8(1− L)
lim
n→∞

(

ϕ (−2nx, 2nx) + ϕ (2nx,−2nx)

+ 3ϕ ((2n + 2)x,−(2n + 2)x) + 3ϕ (− (2n+ 2)x, (2n+ 2)x)
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+ ϕ
((

2n+1 + 3
)

x,−
(

2n+1 + 3
)

x
)

+ ϕ
(

−
(

2n+1 + 3
)

x,
(

2n+1 + 3
)

x
) )

= 0

for all x ∈ V \{0}. Since f(0) = F (0), we have shown that f ≡ F . �

Theorem 3.3. Suppose that f : V → Y satisfies the inequality (3.1) for all

x, y ∈ V \{0}, where ϕ has the property (2.2) with 0 < L < 1. Then there exists

a unique general quadratic mapping F : V → Y such that

(3.6) ‖f(x)− F (x)‖ ≤
L

4(1− L)

(

ϕ(x,−x) + ϕ(−x, x)
)

for all x ∈ V \{0}. In particular, F is represented by

(3.7)

F (x) = lim
n→∞

(

2n−1

(

f
( x

2n

)

− f

(

−x

2n

))

+
4n

2

(

f
( x

2n

)

+ f

(

−x

2n

)

− 2f(0)

))

+ f(0)

for all x ∈ V .

Proof. Let f̃ = f − f(0). Then f̃ satisfies (3.1), f̃(0) = 0, and Df̃ = Df . If we

consider the mapping Ã as in Lemma 2.2, then we see that
∥

∥

∥
f̃(x)− Ãf̃(x)

∥

∥

∥
=
∥

∥

∥
Df̃

(x

2
,−

x

2

)
∥

∥

∥

≤ ϕ
(x

2
,−

x

2

)

+ ϕ
(

−
x

2
,
x

2

)

≤
L

4

(

ϕ(x,−x) + ϕ(−x, x)
)

for all x ∈ V \{0}, which implies that dϕ(f̃ , Ãf̃) ≤
L
4 <∞. By Lemma 2.2, we

get

dϕ

(

Ãnf̃ , Ãn+1f̃
)

<∞

for all n ≥ 0. We can apply (2) and (3) of Theorem 2.1 to get a unique fixed

point F̃ : V → Y of the strictly contractive mapping Ã, which is defined by

(3.8)

F̃ (x) := lim
n→∞

Ãnf̃(x)

= lim
n→∞

(

2n−1
(

f̃
( x

2n

)

−f̃
(

−
x

2n

))

+
4n

2

(

f̃
( x

2n

)

+f̃
(

−
x

2n

))

)

for all x ∈ V . Moreover, we can say that

dϕ(f̃ , F̃ ) ≤
1

1− L
dϕ(f̃ , Af̃) ≤

L

4(1− L)

that is

(3.9) ‖F̃ (x)− f̃(x)‖ ≤
L

4(1− L)

(

ϕ(x,−x) + ϕ(−x, x)
)
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for all x ∈ V \{0}. Replacing x by x
2n and y by y

2n in (3.1), we obtain

‖DÃnf̃(x, y)‖ =
∥

∥

∥
2n−1

(

Df̃
( x

2n
,
y

2n

)

−Df̃
(

−
x

2n
,−

y

2n

))

+
4n

2

(

Df̃
( x

2n
,
y

2n

)

+Df̃
(

−
x

2n
,−

y

2n

)) ∥

∥

∥

≤

(

2n−1 +
4n

2

)

(

ϕ
( x

2n
,
y

2n

)

+ ϕ
(

−
x

2n
,−

y

2n

))

≤
Ln

4n

(

2n−1 +
4n

2

)

(ϕ(x, y) + ϕ(−x,−y))

for all x, y ∈ V \{0}. In a similar way of the proof of Theorem 3.2, this implies
that

DF̃ (x, y) = 0

for all x, y ∈ V . Put F = F̃ + f(0). Then (3.6) and (3.7) follow from (3.9) and
(3.8), respectively, too. Since the uniqueness of F is clear in the fixed point
theory, we have proved this theorem. �

Theorem 3.4. Let ϕ : (V \{0})2 → [0,∞) satisfy the condition (2.1) for given

0 < L < 1 with ϕ(x, y) = ϕ(−x,−y) for all x, y ∈ V \{0}. If f satisfies the

inequality (3.1) for all x, y ∈ V \{0}, then there exists a unique general quadratic

mapping F : V → Y such that

‖f(x)− F (x)‖ ≤
1

2(1− L)
ϕ(x,−x)

for all x ∈ V \{0}. Moreover, if 0 < L < 1
2 and ϕ is continuous, then f ≡ F ,

i.e., f is itself a general quadratic mapping.

Proof. If we consider the mappings A, f̃ and F̃ in Theorem 3.2, then we have

‖f̃(x)−Af̃(x)‖ =

∥

∥

∥

∥

−
3

8
Df̃(x,−x) +

1

8
Df̃(−x, x)

∥

∥

∥

∥

≤
1

4
(ϕ(x,−x) + ϕ(−x, x))

and so

‖f(x)− F (x)‖ = ‖f̃(x)− F̃ (x)‖ =
1

1− L
‖f̃(x)−Af̃(x)‖ ≤

ϕ(x,−x)

2(1− L)

for all x ∈ V \{0}. �

Theorem 3.5. Suppose that f : V → Y satisfies the inequality (3.1) for all

x, y ∈ V \{0}, where ϕ has the property (2.2) with 0 < L < 1. If ϕ(x, y) =
ϕ(−x,−y) for all x, y ∈ V \{0}, then there exists a unique general quadratic

mapping F : V → Y such that

‖f(x)− F (x)‖ ≤
L

4(1− L)
ϕ(x,−x)

for all x ∈ V \{0}.
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Proof. If we consider the mappings Ã, f̃ , and F̃ in Theorem 3.3, then we have
∥

∥

∥
f̃(x) − Ãf̃(x)

∥

∥

∥
=
∥

∥

∥
Df̃

(x

2
,−

x

2

)
∥

∥

∥
≤
L

8

(

ϕ(x,−x) + ϕ(−x, x)
)

and so

‖f(x)− F (x)‖ = ‖f̃(x) − F̃ (x)‖ =
1

1− L
‖f̃(x)− Ãf̃(x)‖ ≤

Lϕ(x,−x)

4(1− L)

for all x ∈ V \{0}. �

Now we obtain the Hyers-Ulam stability results in the framework of normed
spaces using Theorem 3.4 and Theorem 3.5.

Corollary 3.6. Let X be a normed space and Y a Banach space. Suppose

that, for θ ≥ 0 and p ∈ R\[1, 2], the mapping f : X → Y satisfies an inequality

of the form

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X\{0}. Then there exists a unique general quadratic mapping

F : X → Y such that

‖f(x)− F (x)‖ ≤

{

2θ
2−2p ‖x‖

p if 0 ≤ p < 1
2θ

2p−4‖x‖
p if p > 2

for all x ∈ X\{0} and f is itself a general quadratic mapping if p < 0.

Proof. Let ϕ(x, y) := θ(‖x‖p + ‖y‖p) for all x, y ∈ X\{0}. If p < 1, then ϕ
satisfies (2.1) with L = 2p−1 < 1. In particular, if p < 0, then 0 < L < 1

2 and

it is clear that ϕ is continuous on (X\{0})2. On the other hand if p > 2, then
ϕ satisfies (2.2) with L = 22−p < 1. So we can prove this corollary by using
Theorem 3.4 and Theorem 3.5, respectively. �

Corollary 3.7. Let X be a normed space and Y a Banach space. Suppose that,

for θ ≥ 0 and p+ q ∈ R\[1, 2], the mapping f : X → Y satisfies an inequality

of the form

‖Df(x, y)‖ ≤ θ‖x‖p‖y‖q

for all x, y ∈ X\{0}. Then there exists a unique general quadratic mapping

F : X → Y such that

‖f(x)− F (x)‖ ≤

{

θ
2−2p+q ‖x‖

p+q if 0 ≤ p+ q < 1
θ

2p+q
−4‖x‖

p+q if p+ q > 2

for all x ∈ X\{0} and f is itself a general quadratic mapping if p+ q < 0.

Proof. Let ϕ(x, y) := θ‖x‖p‖y‖q for all x, y ∈ X\{0}. If p + q < 1, then ϕ
satisfies (2.1) with L = 2p+q−1 < 1. In particular, if p+ q < 0, then 0 < L < 1

2

and it is clear that ϕ is continuous on (X\{0})2. Therefore we can prove the
corollary in this case by Theorem 3.4. On the other hand, if p+ q > 2, then ϕ
satisfies (2.2) with L = 22−p+q < 1. By Theorem 3.5, the proof of this corollary
completes. �
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4. Applications to Jensen’s functional equation and the quadratic
functional equation

For a given mapping f : V → Y , we use the following abbreviations

Jf(x, y) := 2f

(

x+ y

2

)

− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y)

for all x, y ∈ V . Using the previous results, we can prove stability results about
Jensen’s functional equation Jf ≡ 0 and the quadratic functional equation
Qf ≡ 0 by followings.

Corollary 4.1. Let ψi : V
2 → [0,∞), i = 1, 2, be given functions. Suppose

that for each i = 1, 2, fi : V → Y satisfies

(4.1) ‖Jfi(x, y)‖ ≤ ψi(x, y)

for all x, y ∈ V , respectively. If there exists 0 < L < 1 such that ψ1 has the

property (2.1) and ψ2 satisfies (2.2) for all x, y ∈ V , then there exist unique

Jensen mappings Fi : V → Y , i = 1, 2, such that

(4.2) ‖f1(x) − F1(x)‖ ≤
3Ψ1(x)

8(1− L)
,

(4.3) ‖f2(x) − F2(x)‖ ≤
L

4(1− L)
Ψ2(x)

for all x ∈ V , where Ψi(x) := ψi(x,−x) + ψi(2x, 0) + ψi(−x, x) + ψi(−2x, 0).
In particular, the desired mappings F1, F2 are represented by

(4.4) F1(x) = lim
n→∞

f1(2
nx)

2n
+ f1(0),

(4.5) F2(x) = lim
n→∞

2n
(

f2

( x

2n

)

− f2(0)
)

+ f2(0)

for all x ∈ V . Moreover, if 0 < L < 1
2 and ψ1 is continuous, then f1 is itself a

Jensen mapping.

Proof. Notice that for fi : V → Y , i = 1, 2, we have

‖Dfi(x, y)‖ = ‖Jfi(2x+ y, y)− Jfi(3x+ y, x+ y)‖

≤ ψi(2x+ y, y) + ψi(3x+ y, x+ y)

for all x, y ∈ V . Put ϕi(x, y) := ψi(2x + y, y) + ψi(3x + y, x + y), i = 1, 2,
for all x, y ∈ V , then ϕ1 satisfies (2.1) and ϕ2 satisfies (2.2). Observe that
‖Dfi(x, y)‖ ≤ ϕi(x, y), i = 1, 2, for all x, y ∈ V , respectively. According to
Theorem 3.2, we can take the unique general quadratic mapping F1 by

(4.6) F1(x) := lim
n→∞

(

f1(2
nx) + f1(−2nx)

2 · 4n
+
f1(2

nx)− f1(−2nx)

2n+1

)

+ f1(0)
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which satisfies (4.2) clearly. Observe that
∥

∥

∥

∥

f1(2
nx) + f1(−2nx) − 2f1(0)

2n+1

∥

∥

∥

∥

=
1

2n+1
‖Jf1(2

nx,−2nx)‖

≤
1

2n+1
ψ1(2

nx,−2nx)

≤
Ln

2
ψ1(x,−x)

for all x ∈ V . Letting n→ ∞, we get

lim
n→∞

f1(2
nx) + f1(−2nx)

2n+1
= 0

for all x, y ∈ V . Together with (4.6), this implies (4.4). Notice that
∥

∥

∥

Jf1(2
nx, 2ny)

2n

∥

∥

∥
≤
ψ1(2

nx, 2ny)

2n
≤ Lnψ1(x, y)

for all x, y ∈ V . Taking the limit as n→ ∞, we obtain

JF1(x, y) = 0

for all x, y ∈ V . In particular, consider the case 0 < L < 1
2 and ψ1 is continuous.

Then ϕ1 is continuous on (V \{0})2 and we can say that f1 ≡ F1 by Theorem
3.2. On the other hand, according Theorem 3.3, we can get

(4.7)

F2(x) := lim
n→∞

(

2n−1

(

f2

( x

2n

)

− f2

(

−x

2n

))

+
4n

2

(

f2

( x

2n

)

+ f2

(

−x

2n

)

− 2f2(0)

))

+ f2(0)

which is the unique general quadratic mapping satisfying (4.3). From (4.1) and
(2.2), we have

lim
n→∞

22n−1
∥

∥

∥
f2

( x

2n

)

+ f2

(

−x

2n

)

− 2f2(0)
∥

∥

∥
= lim

n→∞

22n−1
∥

∥

∥
Jf2

( x

2n
,−

x

2n

)
∥

∥

∥

≤ lim
n→∞

22n−1ψ2

( x

2n
,−

x

2n

)

≤ lim
n→∞

Ln

2
ψ2(x,−x)

= 0

as well as

lim
n→∞

2n−1

(

f2

( x

2n

)

+ f2

(

−x

2n

)

− 2f2(0)

)

= 0

for all x ∈ V . So we get (4.5) following (4.7). Observe that
∥

∥

∥
2nJf2

( x

2n
,
y

2n

)∥

∥

∥
≤ 2nψ2

( x

2n
,
y

2n

)

≤
Ln

2n
ψ2(x, y)

for all x, y ∈ V . Taking the limit as n→ ∞, then we get

JF2(x, y) = 0
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for all x, y ∈ V . �

Corollary 4.2. Let ψi : V
2 → [0,∞), i = 1, 2, be given functions. Suppose

that each fi : V → Y, i = 1, 2, satisfies

(4.8) ‖Qfi(x, y)‖ ≤ ψi(x, y)

for all x, y ∈ V , respectively. If there exists 0 < L < 1 such that the mappings

ψ1 and ψ2 have the property (2.1) and (2.2) for all x, y ∈ V , respectively, then

there exist unique quadratic mappings F1, F2 : V → Y such that

(4.9) ‖f1(x)− f1(0)− F1(x)‖ ≤
3Ψ1(x)

8(1− L)
,

(4.10) ‖f2(x) − F2(x)‖ ≤
L

4(1− L)
Ψ2(x)

for all x ∈ V \{0}, where

Ψi(x) := ψi(x, x) + ψi(x, 0) + 2ψi(0, 0) + ψi(0,−x)

+ ψi(−x,−x) + ψi(−x, 0) + ψi(0, x),

respectively. In particular, the desired mappings F1 and F2 are represented by

(4.11) F1(x) = lim
n→∞

f1(2
nx)

4n
,

(4.12) F2(x) = lim
n→∞

4nf2

( x

2n

)

for all x ∈ V . Moreover, if 0 < L < 1
2 and ψ1 is continuous, then f1 − f1(0) is

itself a quadratic mapping.

Proof. Notice that

‖Dfi(x, y)‖ = ‖Qfi(x, 2x+ y)−Qfi(x, x+ y) +Qfi(0, y)−Qfi(0, x+ y)‖

≤ ψi(x, 2x+ y) + ψi(x, x + y) + ψi(0, y) + ψi(0, x+ y)

for all x, y ∈ V , i = 1, 2. Put

ϕi(x, y) := ψi(x, 2x+ y) + ψi(x, x + y) + ψi(0, y) + ψi(0, x+ y)

for all x, y ∈ V , then ‖Dfi(x, y)‖ ≤ ϕi(x, y) for all x, y ∈ V , respectively.
Moreover, ϕ1 satisfies (2.1) and ϕ2 holds (2.2). Therefore, according to Theo-
rem 3.2, there exists a unique mapping F1 : V → Y satisfying (4.9), which is
represented by

F1(x) := lim
n→∞

(

f1(2
nx) + f1(−2nx)

2 · 4n
+
f1(2

nx)− f1(−2nx)

2n+1

)

.

Observe that

lim
n→∞

∥

∥

∥

∥

f1(2
nx)− f1(−2nx)

2n+1

∥

∥

∥

∥

= lim
n→∞

1

2n+1
‖Qf1(0, 2

nx)‖
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≤ lim
n→∞

1

2n+1
ψ1(0, 2

nx)

≤ lim
n→∞

Ln

2
ψ1(0, x)

= 0

and

lim
n→∞

∥

∥

∥

∥

f1(2
nx)− f1(−2nx)

2 · 4n

∥

∥

∥

∥

≤ lim
n→∞

Ln

2n+1
ψ1(0, x) = 0

for all x ∈ V . From this, we get (4.11). Notice that
∥

∥

∥

∥

Qf1(2
nx, 2ny)

4n

∥

∥

∥

∥

≤
ψ1(2

nx, 2ny)

4n
≤
Ln

2n
ψ1(x, y)

for all x, y ∈ V . Taking the limit as n→ ∞ in the above inequality, we get

QF1(x, y) = 0

for all x, y ∈ V . If 0 < L < 1
2 and ψ1 is continuous, then ϕ1 is also continuous

on (V \{0})2 and we can say that f1 − f1(0) ≡ F1 by Theorem 3.2. On the
other hand, since Lψ2(0, 0) ≥ 4ψ2(0, 0) and ‖2f2(0)‖ = ‖Qf2(0, 0)‖ ≤ ψ2(0, 0),
we can show that ψ2(0, 0) = 0 and f2(0) = 0. According to Theorem 3.3, there
exists a unique mapping F2 : V → Y satisfying (4.10), which is represented by
(4.7). We have

lim
n→∞

4n

2

∥

∥

∥
− f2

( x

2n

)

+ f2

(

−
x

2n

)
∥

∥

∥
= lim

n→∞

4n

2

∥

∥

∥
Qf2

(

0,
x

2n

)
∥

∥

∥

≤ lim
n→∞

4n

2
ψ2

(

0,
x

2n

)

≤ lim
n→∞

Ln

2
ψ2(0, x) = 0

as well as

lim
n→∞

2n−1
∥

∥

∥
f2

( x

2n

)

− f2

(

−
x

2n

)∥

∥

∥
= 0

for all x ∈ V . From these and (4.7), we get (4.12). Notice that
∥

∥

∥
4nQf2

( x

2n
,
y

2n

) ∥

∥

∥
≤ 4nψ2

( x

2n
,
y

2n

)

≤ Lnψ2(x, y)

for all x, y ∈ V . Taking the limit as n→ ∞, we have shown that

QF2(x, y) = 0

for all x, y ∈ V . �

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.
Japan 2 (1950), 64–66.
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