• 제목/요약/키워드: function space integrals

검색결과 47건 처리시간 0.025초

RELATIONSHIP BETWEEN THE WIENER INTEGRAL AND THE ANALYTIC FEYNMAN INTEGRAL OF CYLINDER FUNCTION

  • Kim, Byoung Soo
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.249-260
    • /
    • 2014
  • Cameron and Storvick discovered a change of scale formula for Wiener integral of functionals in a Banach algebra $\mathcal{S}$ on classical Wiener space. We express the analytic Feynman integral of cylinder function as a limit of Wiener integrals. Moreover we obtain the same change of scale formula as Cameron and Storvick's result for Wiener integral of cylinder function. Our result cover a restricted version of the change of scale formula by Kim.

ON THE MIXED RADIAL-ANGULAR INTEGRABILITY OF LITTLEWOOD-PALEY FUNCTIONS

  • Zhang, Xiao
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.403-417
    • /
    • 2021
  • This note is devoted to establishing the boundedness for some classes of Littlewood-Paley square operators defined by the kernels without any regularity on the mixed radial-angular spaces. The corresponding vector-valued versions are also presented. As applications, the corresponding results for the Littlewood-Paley g∗λ function and the Littlewood-Paley function related to the area integrals are also obtained.

A NOTE ON THE W*IN DUAL SPACE

  • Yoon, Ju-Han
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.277-287
    • /
    • 1996
  • The theory of integration of functions with values in a Banach space has long been a fruitful area of study. In the eight years from 1933 to 1940, seminal papers in this area were written by Bochner, Gelfand, Pettis, Birhoff and Phillips. Out of this flourish of activity, two integrals have proved to be of lasting: the Bochner integral of strongly measurable function. Through the forty years since 1940, the Bochner integral has a thriving prosperous history. But unfortunately nearly forty years had passed until 1976 without a significant improvement after B. J. Pettis's original paper in 1938 [cf. 11].

  • PDF

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

ON THE PROPER QUADRATIC FIRST INTEGRALS IN SYMPLECTIC MANIFOLDS

  • Ryu, Shi-Kyu
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권1호
    • /
    • pp.83-94
    • /
    • 1996
  • Classical mechanics begins with some variants of Newton's laws. Lagrangian mechanics describes motion of a mechanical system in the configuration space which is a differential manifold defined by holonomic constraints. For a conservative system, the equations of motion are derived from the Lagrangian function on Hamilton's variational principle as a system of the second order differential equations. Thus, for conservative systems, Newtonian mechanics is a particular case of Lagrangian mechanics.(omitted)

  • PDF

A NOTE ON RADON-NIKODYM THEOREM FOR OPERATOR VALUED MEASURES AND ITS APPLICATIONS

  • Ahmed, Nasiruddin
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.285-295
    • /
    • 2013
  • In this note we present sufficient conditions for the existence of Radon-Nikodym derivatives (RND) of operator valued measures with respect to scalar measures. The RND is characterized by the Bochner integral in the strong operator topology of a strongly measurable operator valued function with respect to a nonnegative finite measure. Using this result we also obtain a characterization of compact sets in the space of operator valued measures. An extension of this result is also given using the theory of Pettis integral. These results have interesting applications in the study of evolution equations on Banach spaces driven by operator valued measures as structural controls.

AN EXTERESION THEOREM FOR THE FOLLAND-STEIN SPACES

  • Kim, Yonne-Mi
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.49-55
    • /
    • 1995
  • This paper is the third of a series in which smoothness properties of function in several variables are discussed. The germ of the whole theory was laid in the works by Folland and Stein [4]. On nilpotent Lie groups, they difined analogues of the classical $L^p$ Sobolev or potential spaces in terms of fractional powers of sub-Laplacian, L and extended several basic theorems from the Euclidean theory of differentaiability to these spaces: interpolation properties, boundedness of singular integrals,..., and imbeding theorems. In this paper we study the analogue to the extension theorem for the Folland-Stein spaces. The analogue to Stein's restriction theorem were studied by M. Mekias [5] and Y.M. Kim [6]. First, we have the space of Bessel potentials on the Heisenberg group introduced by Folland [4].

  • PDF