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ON THE MIXED RADIAL-ANGULAR INTEGRABILITY OF

LITTLEWOOD-PALEY FUNCTIONS

Xiao Zhang

Abstract. This note is devoted to establishing the boundedness for some

classes of Littlewood-Paley square operators defined by the kernels with-
out any regularity on the mixed radial-angular spaces. The correspond-

ing vector-valued versions are also presented. As applications, the corre-
sponding results for the Littlewood-Paley g∗λ function and the Littlewood-

Paley function related to the area integrals are also obtained.

1. Introduction

Let Rn be the Euclidean space of dimension n and Sn−1 denote the unit
sphere in Rn (n ≥ 2) equipped with the normalized Lebesgue measure dσ. The
mixed radial-angular spaces Lp|x|L

q
θ(Rn), 1 ≤ p, q ≤ ∞, consist of all functions

u satisfying ‖u‖Lp|x|Lqθ(Rn) <∞, where

‖u‖Lp|x|Lqθ(Rn) :=
(∫ ∞

0

‖u(ρ·)‖pLq(Sn−1)ρ
n−1dρ

)1/p

,

‖u‖L∞|x|Lqθ(Rn) := sup
ρ>0
‖u(ρ·)‖Lq(Sn−1).

Note that the spaces Lp|x|L
q
θ(Rn) enjoy the following easy properties.

(i) If 1 ≤ p ≤ ∞ and q = p, then

(1) ‖u‖Lp|x|Lqθ(Rn) = ‖u‖Lp(Rn).

(ii) If u is a radial function on Rn and 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, then

‖u‖Lp|x|Lqθ(Rn) ' ‖u‖Lp(Rn).

(iii) If 1 ≤ p ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, then

‖u‖Lp|x|Lq1θ (Rn) ≤ Cn,p,q1,q2‖u‖Lp|x|Lq2θ (Rn).
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Here the notation A ' B means that there are two positive constants C, C ′

such that A ≤ CB and B ≤ C ′A. Throughout this paper, we use Cα,β,... to
denote positive constants that depend on parameters α, β, . . ..

Based on the definition of Lp|x|L
q
θ(Rn) and (1), one might think that the

mixed radial-angular space Lp|x|L
q
θ(Rn) can be seen as an formal extension of

the Lebesgue space Lp(Rn). Over the last several years it has been successfully
used in studying Strichartz estimates and dispersive equations (see [4,18,24] for
example). Recently the mixed radial-angular space Lp|x|L

q
θ(Rn) is also playing

active roles in the theory of singular integral operator. The first work in this
topic was due to Córdoba [8] who proved that, among other things, the rough
singular integral operator

TΩ(f)(x) = p.v.

∫
Rn
f(x− y)

Ω(y/|y|)
|y|n

dy,

is bounded on Lp|x|L
q
θ(Rn) for all 1 < p < ∞ and q = 2, provided that Ω ∈

C1(Sn−1) with vanishing integral
∫

Sn−1 Ω(θ)dσ(θ) = 0. By using the same
argument in [8, Theorem 2.1], P. D’Ancona and R. Lucà [9] extended the above
index q = 2 to the range 1 < q < ∞. The corresponding radial weighted
results were established by Cacciafesta and R. Lucà [5] and Duoandikoetxea
and Oruetxebarria [11]. Recently, Liu and Fan [15] and Liu et al. [16] improved
the above unweighted results to the case Ω ∈ Lq(Sn−1) or Ω ∈ Fβ(Sn−1) (the
Grafakos-Stefanov class) and extended the above results to the singular integral
operators along polynomial curves.

On the other hand, the theory of the Littlewood-Paley functions, as everyone
knows, has been an important part of harmonic analysis. One can consult
Stein’s works [21–23] for its origin and significance. Recall that the square
function of Littlewood-Paley type is defined in the following way

gψ(f)(x) =
(∫ ∞

0

|ψt ∗ f(x)|2 dt
t

)1/2

,

where ψ is a function in L1(Rn) with vanishing integral
∫
Rn ψ(x)dx = 0 and

ψt(x) = t−nψ(t−1x) for t > 0.
Over the last several years a considerable amount of attention has been

given to study the boundedness for the Littlewood-Paley functions on various
function spaces. For example, see [1,2,6,10,12,19,20] for the Lebesgue spaces,
[14, 25] for the Triebel-Lizorkin spaces. A well-known result for Littlewood-
Paley functions was given by Benedek, Calderón and Panzone [2] who proved
the following.

Theorem A ([2]). Suppose that ψ satisfies

|ψ(x)| ≤ C(1 + |x|)−n−ε for some ε > 0,∫
Rn
|ψ(x− y)− ψ(x)|dx ≤ C|y|ε for some ε > 0.
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Then gψ is bounded on Lp(Rn) for all 1 < p <∞.

Subsequently, the condition on ψ in Theorem A was relaxed by Fan and
Sato [12] who established the following result.

Theorem B ([12]). Suppose that the function ψ satisfies the following condi-
tions:

(i)
∫
|x|≥1

|ψ(x)||x|εdx <∞ for some ε > 0.

(ii)
( ∫
|x|<1

|ψ(x)|udx
)1/u

<∞ for some u > 1.

(iii) |ψ(x)| ≤ h(x)Ω(x′) for all x ∈ Rn \ {0}, where x′ = x/|x|, for some
non-negative function h on (0,∞) and Ω on Sn−1 (the unit sphere in Rn) such
that

(a) h(r) is non-increasing on (0,∞) and h(|x|) ∈ L1(Rn),
(b) Ω ∈ Ls(Sn−1) for some 1 < s ≤ ∞.
Then gψ is bounded on Lp(Rn) for all 1 < p <∞.

Recently, Sato [20] obtained the following refined result via a minimum con-
dition on ψ.

Theorem C ([20]). Suppose that |ψ(x)| ≤ h(x)Ω(x′) for all x ∈ Rn\{0}, where
h is a non-negative, non-increasing function on (0,∞) with supported in (0, 1]
and Ω is a non-negative function on Sn−1. We assume that h(|x|) ∈ L1(Rn),
Ω ∈ L1(Sn−1) and ψ ∈ Ls(Rn) for some 1 < s ≤ ∞. Put mψ(x) = h(|x|)Ω(x′).
Then

‖gψ(f)‖Lp(Rn) ≤ Cp(s/(s− 1))1/2(‖ψ‖Ls(Rn) + ‖mψ‖L1(Rn))‖f‖Lp(Rn)

for all 1 < p <∞, where the constant Cp > 0 is independent of s, ψ, h, Ω.

Based on Theorems B and C and (1), a question that arises naturally is the
following.

Question 1.1. Is the operator gψ bounded on Lp|x|L
q
θ(Rn) for p 6= q under the

same assumptions on ψ as in one of Theorems B and C?

Question 1.1 is the main motivation of this work. In this paper we shall give
an affirmative answer to the above question. Our result can be formulated as
follows.

Theorem 1.2. Suppose that ψ satisfies the condition of Theorem B or C. Then
for 1 < q < 2 and q ≤ p < 2q

2−q or 2 ≤ q ≤ p < ∞, the following inequalities

hold:
‖gψ(f)‖Lp|x|Lqθ(Rn) ≤ Cp,q‖f‖Lp|x|Lqθ(Rn);∥∥∥(∑

j∈Z
|gψ(fj)|q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

;

∥∥∥(∑
j∈Z
|gψ(fj)|q

)1/q∥∥∥
Lp(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(Rn)

.
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Actually, Theorem 1.2 will be derived from the following more general one.

Theorem 1.3. Assume that ψ satisfies the following conditions:
(i) There exist ε, δ > 0 and C > 0 such that∫ 2k+1

2k
|ψ̂(tξ)|2 dt

t
≤ C min{1, |2kξ|ε, |2kξ|−δ}

for all k ∈ Z and ξ ∈ Rn;
(ii) There exists a constant C > 0 such that∥∥∥ sup

t>0

∣∣|ψt| ∗ f(x)
∣∣∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn)

for all 1 < p <∞.
Then for 1 < q < 2 and q ≤ p < 2q

2−q or 2 ≤ q ≤ p < ∞, the following

inequalities hold:

(2) ‖gψ(f)‖Lp|x|Lqθ(Rn) ≤ Cp,q‖f‖Lp|x|Lqθ(Rn);

(3)
∥∥∥(∑

j∈Z
|gψ(fj)|q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

;

(4)
∥∥∥(∑

j∈Z
|gψ(fj)|q

)1/q∥∥∥
Lp(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(Rn)

.

This paper will be organized as follows. Section 2 contains some key proposi-
tions, which are the main ingredients of our proofs. The proofs of Theorems 1.2
and 1.3 will be given in Section 3. Finally, as applications of our main results,
the mixed radial-angular integrability for the Littlewood-Paley g∗λ function and
the Littlewood-Paley function related to the area integrals will be established
in Section 4. We would like to remark that some ideas in the proofs of our
main results are taken from [13,16,19,20].

Throughout this paper, for any function f , we denote f̃ by f̃(x) = f(−x).
For any p ∈ (1,∞), we let p′ denote the dual exponent to p defined as 1/p +
1/p′ = 1. For any nonnegative measurable function ω, we set

‖f‖Lp(w) =
(∫

Rn
|f(x)|pω(x)dx

)1/p

.

Thus Lp(ω) associated with the function ω is defined by

Lp(Rn, ω(x)dx) = {f : ‖f‖Lp(ω) <∞}.

We also denote by M the usual Hardy-Littlewood maximal function. For s > 1,
we define the operator Ms by Ms(f) = (M(fs))1/s.
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2. Some key propositions

This section is devoted to presenting a general criterion on the weighted
boundedness of Littlewood-Paley functions, which is a key of our proofs.

Proposition 2.1. Assume that ψ satisfies the following conditions:
(a) There exist ε, δ > 0 and C > 0 such that

(5)

∫ 2k+1

2k
|ψ̂(tξ)|2 dt

t
≤ C min{1, |2kξ|ε, |2kξ|−δ}

for all k ∈ Z and ξ ∈ Rn.
(b) There exists a constant C > 0 such that

(6) ‖σ(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all 1 < p <∞. Here

σ(f)(x) := sup
t>0

∣∣|ψt| ∗ f(x)
∣∣.

For s > 0, we define the operators σ̃ and σ̃s by

σ̃(f)(x) := sup
t>0

∣∣|ψ̃t| ∗ f(x)
∣∣, σ̃s(f)(x) := (σ̃(|f |s)(x))1/s.

Here ψ̃t(x) = ψt(−x). Then for all nonnegative measurable functions u on Rn,
the following inequality

(7) ‖gψ(f)‖Lp(u) ≤ Cp‖f‖Lp(Ms(σ̃s(u)))

holds, provided that one of the following conditions holds:
(i) 1 < p < 2 and s > 2/p;
(ii) 2 ≤ p <∞ and s > 1.

Proof. This proof will be divided into two steps:

Step 1: Proof of (7) for the case (i). Let Φ(t) ∈ C∞c ((1/4, 1)) such that
0 ≤ Φ ≤ 1 and

∑
k∈Z(Φ(2k|ξ|))2 = 1. Define the Fourier multiplier operators

{Sk}k∈Z by Skf(x) = Θk ∗ f(x), where Θ̂k(ξ) = Φ(2k|ξ|). By the arguments
similar to those used in deriving (5) in [13], one can get

(8)
∥∥∥(∑

k∈Z
|Skf |2

)1/2∥∥∥
Lp(w)

≤ Cp,w‖f‖Lp(w)

for all 1 < p <∞ and w ∈ Ap.
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By the changes of variables and Minkowski’s inequality, we can write

(9)

gψ(f)(x) =
(∑
k∈Z

∫ 2k+1

2k
|ψt ∗ f(x)|2 dt

t

)1/2

=
(∑
k∈Z

∫ 2

1

|ψ2kt ∗ f(x)|2 dt
t

)1/2

=
(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

S2
j+k(ψ2kt ∗ f)(x)

∣∣∣2 dt
t

)1/2

≤
∑
j∈Z

(∑
k∈Z

∫ 2

1

|ψ2kt ∗ S2
j+kf(x)|2 dt

t

)1/2

=:
∑
j∈Z

Tjf(x).

Hence, by (9), to prove (7), it suffices to show that for any 1 < p < 2 and
s > 2/p, there exists a constant α > 0 independent of j such that

(10) ‖Tjf‖Lp(u) ≤ Cp,q2−α|j|‖f‖Lp(MsM
µ̃
λ,su).

Now we shall prove (10). Fix k ∈ Z, t ∈ [1, 2] and a nonnegative measurable
function u on Rn, it holds that

(11) ‖ψ2kt ∗ f‖L∞(Rn) ≤ ‖ψ‖L1(Rn)‖f‖L∞(Rn);

(12) ‖ψ2kt ∗ f‖L1(u) ≤ ‖f‖L1(σ̃(u)).

By the interpolation of Lp-spaces with change of measure ([3, Corollary 5.5.4])
between (11) and (12), one get

(13) ‖ψ2kt ∗ f‖Lp(u) ≤ Cp‖f‖Lp(σ̃(u))

for all 1 < p < 2. Here Cp > 0 is independent of k, t. We get from (13) that

(14)

∫
Rn

∫ 2

1

|ψ2kt ∗ fk(x)|p dt
t
u(x)dx ≤ Cp

∫
Rn
|fk(x)|pσ̃(u)(x)dx

for all 1 < p < 2. Then we get from (14) that

(15)

∫
Rn

∑
k∈Z

∫ 2

1

|ψ2kt ∗ fk(x)|p dt
t
u(x)dx ≤ Cp

∫
Rn

∑
k∈Z
|fk(x)|pσ̃(u)(x)dx

for all 1 < p < 2. By (6) one has

(16)

∫
Rn

(
sup
k∈Z

sup
t∈[1,2]

|ψ2kt ∗ fk(x)|
)p
dx ≤

∫
Rn

(
σ
(

sup
k∈Z
|fk(x)|

))p
dx

≤ Cp
∫
Rn

(
sup
k∈Z
|fk(x)|

)p
dx
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for all 1 < p < 2. Let t1 = 2/p. The interpolation between (15) and (16) gives
that

(17)

∫
Rn

(∑
k∈Z

∫ 2

1

|ψ2kt ∗ fk(x)|2 dt
t

)p/2
u1/t1(x)dx

≤ Cp

∫
Rn

(∑
k∈Z
|fk(x)|2

)p/2
(σ̃(u))1/t1(x)dx

for all 1 < p < 2. By substituting ut1 for u in (17), one has

(18)

∫
Rn

(∑
k∈Z

∫ 2

1

|ψ2kt ∗ fk(x)|2 dt
t

)p/2
u(x)dx

≤ Cp

∫
Rn

(∑
k∈Z
|fk(x)|2

)p/2
σ̃t1(u)(x)dx

for all 1 < p < 2. Note that the fact that Msu ∈ A1 (see [7]) and u ≤ Mt1u.
Then we have Mt1(σ̃t1(u)) ∈ A1. It follows from (18) that

(19)

∫
Rn

(∑
k∈Z

∫ 2

1

|ψ2kt ∗ fk(x)|2 dt
t

)p/2
u(x)dx

≤ Cp

∫
Rn

(∑
k∈Z
|fk(x)|2

)p/2
Mt1(σ̃t1(u))(x)dx

for all 1 < p < 2. In light of (8) and (19) we would have

(20)

‖Tjf‖Lp(u) =
∥∥∥(∑

k∈Z

∫ 2

1

|ψ2kt ∗ S2
j+kf |2

dt

t

)1/2∥∥∥
Lp(u)

≤ Cp
∥∥∥(∑

k∈Z
|S2
j+kf |2

)1/2∥∥∥
Lp(Mt1 (σ̃t1 (u)))

≤ Cp‖f‖Lp(Mt1 (σ̃t1 (u)))

for all 1 < p < 2.
Next we estimate ‖Tjf‖L2(u). By (5) and Plancherel’s theorem, there exists

a constant β > 0 such that

(21)

∫
Rn

∫ 2

1

|ψ2kt ∗ Sj+kw(x)|2 dt
t
dx ≤ C2−β|j|

∫
Rn
|w(x)|2dx

for arbitrary function w on Rn. One can easily check that

|ψ2kt ∗ Sj+kw(x)|2 ≤ ‖ψ‖L1(Rn)‖Θj+k‖L1(Rn)|ψ2kt| ∗ |Θj+k| ∗ |w(x)|2,
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which gives

(22)

∫
Rn

∫ 2

1

|ψ2kt ∗ Sj+kw(x)|2 dt
t
us(x)dx

≤ ‖ψ‖L1(Rn)‖Θj+k‖L1(Rn)

×
∫ 2

1

∫
Rn
|ψ2kt| ∗ |Θj+k| ∗ |w|2(x)us(x)dx

dt

t

≤ C

∫
Rn
|w(x)|2M(σ̃us)(x)dx

for any s > 1. Combining (21) with (22) and the interpolation of L2-spaces
with change of measure ([3, Theorem 5.4.1]) implies

(23)

∫
Rn

∫ 2

1

|ψ2kt ∗ Sj+kw(x)|2 dt
t
u(x)dx

≤ Cs2
− β
s′ |j|

∫
Rn
|w(x)|2Ms(σ̃s(u))(x)dx

for any s > 1 and arbitrary function w on Rn. Noting that Ms(σ̃s(u)) ∈
A1. By using (11), (23) with w = Sj+kf and the well-known property of the
Rademacher’s function, we have

‖Tjf‖2L2(u) =

∫
Rn

∑
k∈Z

∫ 2

1

|ψ2kt ∗ S2
j+kf(x)|2 dt

t
u(x)dx

≤
∑
k∈Z

∫ 2

1

∫
Rn
|ψ2kt ∗ S2

j+kf(x)|2u(x)dx
dt

t

≤ Cs2−
β
s′ |j|

∫
Rn

∑
k∈Z
|Sj+kf(x)|2Ms(σ̃s(u))(x)dx

≤ Cs2−
β
s′ |j|‖f‖2L2(Ms(σ̃s(u))).

It follows that

(24) ‖Tjf‖L2(u) ≤ Cp2−
β

2s′ |j|‖f‖L2(Ms(σ̃s(u)))

for any s > 1. By an interpolation between (20) and (24) with s = t1, there
exist Cp > 0 and α > 0 such that

(25) ‖Tjf‖Lp(u) ≤ Cp2−α|j|‖f‖Lp(Mt1
(σ̃t1 (u)))

for all 1 < p < 2. By Hölder’s inequality, one can check that Mt1(σ̃t1(u)) ≤
CMs(σ̃s(u)) for s > t1. This together with (25) yields (10).

Step 2: Proof of (7) for the case (ii). By (9), to prove (7) in this case, it
suffices to show that there exist Cp,s > 0 and γ > 0 such that

(26) ‖Tjf‖Lp(u) ≤ Cp,s2−γ|j|‖f‖Lp(Ms(σ̃s(u)))
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for 2 ≤ p <∞ and s > 1. We only show that

(27) ‖Tjf‖Lp(u) ≤ Cp,s‖f‖Lp(Ms(σ̃s(u)))

for all 2 < p < ∞ and s > 1. Actually, inequality (26) follows from (24), (27)
and an interpolation (see [3, Corollary 5.5.4]).

Next we shall prove (27). Fix 2 < p <∞. By duality we can find a function

v ∈ L( p2 )′(u) with unit norm such that∥∥∥(∑
k∈Z

∫ 2

1

|ψ2kt ∗ gk|2
dt

t

)1/2∥∥∥2

Lp(u)
=

∫
Rn

∑
k∈Z

∫ 2

1

|ψ2kt ∗ gk(x)|2 dt
t
· v(x)u(x)dx,

which together with the fact that ‖ψ2kt‖L1(Rn) = ‖ψ‖L1(Rn) implies

(28)

∥∥∥(∑
k∈Z

∫ 2

1

|ψ2kt ∗ gk|2
dt

t

)1/2∥∥∥2

Lp(u)

≤ ‖ψ‖L1(Rn)

∫
Rn

∑
k∈Z
|gk(x)|2

∫ 2

1

∣∣|ψ̃2kt| ∗ (vu)(x)
∣∣dt
t
dx.

Fix s > 1 and let r = ps
2 . By Hölder’s inequality

(29)

∣∣|ψ̃2kt| ∗ (vu)
∣∣ ≤ (|ψ̃2kt| ∗ us)1/r(|ψ̃2kt| ∗ (ur

′/(p/2)′vr
′
))1/r′

≤ (σ̃(us))1/r(σ̃(ur
′/(p/2)′vr

′
))1/r′ .

By Hölder’s inequality with exponents p
2 and (p2 )′, we get from (28) and (29)

that

(30)

∥∥∥(∑
k∈Z

∫ 2

1

|ψ2kt ∗ gk|2
dt

t

)1/2∥∥∥2

Lp(u)

≤ C

∫
Rn

∑
k∈Z
|gk(x)|2(σ̃(us))1/r(x)(σ̃(ur

′/(p/2)′vr
′
))1/r′(x)dx

≤ Cp

∥∥∥(∑
k∈Z
|gk|2

)1/2∥∥∥2

Lp(σ̃s(u))
‖σ̃(ur

′/(p/2)′vr
′
)‖1/r

′

L(p/2)′/r′ (Rn)
.

Note that (p2 )′ > r′ since p
2 = r

s < r, by (6) we get

‖σ̃(ur
′/(p/2)′vr

′
)‖1/r

′

L(p/2)′/r′ (Rn)
≤ Cp‖ur

′/(p/2)′vr
′
‖1/r

′

L(p/2)′/r′ (Rn)
≤ Cp.

This together with (30) yields that

(31)
∥∥∥(∑

k∈Z

∫ 2

1

|ψ2kt ∗ gk|2
dt

t

)1/2∥∥∥
Lp(u)

≤ Cp
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp(σ̃s(u))

for all 2 < p <∞ and any s > 1.
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Finally, by the facts σ̃s(u) ≤ Ms(σ̃s(u)) and Ms(σ̃s(u)) ∈ A1, we get from
(8) and (31) that

‖Tjf‖Lp(u) =
∥∥∥(∑

k∈Z

∫ 2

1

|ψ2kt ∗ S2
j+kf |2

dt

t

)1/2∥∥∥
Lp(u)

≤ Cp
∥∥∥(∑

k∈Z
|S2
j+kf |2

)1/2∥∥∥
Lp(Ms(σ̃s(u)))

≤ Cp‖f‖Lp(Ms(σ̃s(u)))

for all 2 < p <∞ and any s > 1. This proves (27) and finishes the proof. �

As an application of Proposition 2.1, we can get the following weighted
inequalities for Littlewood-Paley functions, which are of interest in its own
right.

Proposition 2.2. Suppose that ψ satisfies the condition of Theorem B or C.
We define the operator MΩ by

MΩ(f)(x) = sup
t>0

t−n
∫
|y|<t

|f(x+ y)|Ω(y/|y|)dy.

For s > 0, we define the operator Ms,Ω by Ms,Ω(f) = (MΩ(fs))1/s. Then the
following inequality

(32) ‖gψ(f)‖Lp(u) ≤ Cp‖f‖Lp(Ms(Ms,Ω(f)))

holds for all nonnegative measurable functions u on Rn, provided that one of
the following conditions holds:

(i) 1 < p < 2 and s > 2/p;
(ii) 2 ≤ p <∞ and s > 1.

Proof. By Lemmas 1-3 of [19], we get

(33)

∫ 2k+1

2k
|ψ̂(tξ)|2 dt

t
≤ C min{1, |2kξ|ε, |2kξ|−ε}

for all k ∈ Z, ξ ∈ Rn and some ε > 0, provided that ψ satisfies the condition of
Theorem B. It was also shown in [20, Lemma 2] that

(34)

∫ 2k+1

2k
|ψ̂(tξ)|2 dt

t
≤ C‖ψ‖2Ls(Rn) min{1, |2kξ|1/(2s

′), |2kξ|−1/(2s′)}

for all k ∈ Z and ξ ∈ Rn if ψ ∈ Ls(Rn) for some s > 1.
On the other hand, if ψ satisfies the condition of Theorem B or C, one can

use the arguments as in Stein [22, pp. 63–64] to obtain

(35) sup
t>0

∣∣|ψt| ∗ f(x)
∣∣ ≤ ‖h‖L1(Rn)v

−1
n AΩ(f)(x),
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where vn is the volume of the unit ball in Rn and

AΩ(f)(x) = sup
t>0

t−n
∫
|y|<t

|f(x− y)|Ω(y/|y|)dy.

One can easily check that

AΩ(f)(x) ≤
∫

Sn−1

|Ω(y′)|My′(f)(x)dσ(y′),

where y′ = y/|y| and My′ is the directional Hardy-Littlewood maximal function
along y′. Noting that

‖My′(f)‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

for all 1 < p <∞, where the constant Cp > 0 is independent of y′. Hence, by
Minkowski’s inequality and (35), it holds that

(36)
∥∥∥ sup
t>0

∣∣|ψt| ∗ f ∣∣∥∥∥
Lp(Rn)

≤ Cp‖Ω‖L1(Sn−1)‖f‖Lp(Rn)

for all 1 < p <∞.
We also get from (35) that

(37) sup
t>0

∣∣|ψ̃t| ∗ f(x)
∣∣ ≤ ‖h‖L1(Rn)v

−1
n AΩ(f̃)(−x) = ‖h‖L1(Rn)v

−1
n MΩ(f)(x),

where MΩ is given as in Proposition 2.2. By (33)-(37) and applying Proposition
2.1, we get (32). This proves Proposition 2.2. �

3. Proofs of Theorems 1.2 and 1.3

This section is devoted to presenting the proofs of Theorems 1.2 and 1.3. To
prove our theorems, we also need the following criterion about the boundedness
of the operators on the mixed radial-angular spaces.

Proposition 3.1 ([16]). Let 1 < q <∞, δ ∈ [1,∞) and s0 ∈ [1,∞). Let T be
a sublinear operator such that

‖Tf‖Lq(u) ≤ Cq,s,s0‖f‖Lq(Θs(u))

for all s ∈ (s0,∞) and any nonnegative measurable function u on Rn, where
the operator Θs satisfies

‖Θs(f)‖Lr(Rn) ≤ Cr‖f‖Lr(Rn)

for all r ∈ (sδ,∞) and all radial functions f . Then for any fixed s ∈ [s0,∞)

and p ∈ (q, qδs
δs−1 ), the following inequalities hold:

‖Tf‖Lp|x|Lqθ(Rn) ≤ Cp,q‖f‖Lp|x|Lqθ(Rn);∥∥∥(∑
j∈Z
|Tfj |q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp|x|L

q
θ(Rn)

;

∥∥∥(∑
j∈Z
|Tfj |q

)1/q∥∥∥
Lp(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp(Rn)

.
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We now turn to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let σ̃t be given as in Proposition 2.1. Fix s > 1. By
(2) and the Lp bounds for M, we get

(38) ‖Ms(σ̃s(u))‖Lr(Rn) ≤ Cp‖u‖Lr(Rn)

for any r > s. By (38), Propositions 2.1 and 3.1, we have that inequalities
(2)-(4) hold for the case 1 < q < 2 and q < p < 2q

2−q or 2 ≤ q < p <∞. These

together with (1) and Theorems B and C yield the conclusions of Theorem
1.2. �

Proof of Theorem 1.3. Theorem 1.3 can be proved by Proposition 2.2 and the
arguments similar to those used to derive Theorem 1.2. Actually, Theorem 1.3
follows directly from Theorem 1.2 according to inequalities (33)-(36). �

4. Additional results

As applications of our main results, we shall establish the mixed radial-
angular integrability for Littlewood-Paley g∗λ function and Littlewood-Paley
function related to the area integral S, which are defined as

g∗ψ,λ(f)(x) =
(∫ ∫

Rn+1
+

( t

t+ |x− y|

)nλ
|ψt ∗ f(y)|2 dydt

tn+1

)1/2

,

where λ > 0 and Rn+1
+ = Rn × (0,∞), and

gψ,S(f)(x) :=
(∫∫

Γ(x)

|ψt ∗ f(y)|2 dydt
tn+1

)1/2

,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}.

The main result of this section can be listed as follows:

Theorem 4.1. Suppose that ψ satisfies the condition of Theorem B or C. Then
for λ > 1 and 2 ≤ p <∞, the following inequalities hold:

(39) ‖g∗ψ,λ(f)‖Lp|x|L2
θ(Rn) ≤ Cp‖f‖Lp|x|L2

θ(Rn);

(40)
∥∥∥(∑

j∈Z
|g∗ψ,λ(fj)|2

)1/2∥∥∥
Lp|x|L

2
θ(Rn)

≤ Cp
∥∥∥(∑

j∈Z
|fj |2

)1/2∥∥∥
Lp|x|L

2
θ(Rn)

;

(41)
∥∥∥(∑

j∈Z
|g∗ψ,λ(fj)|2

)1/2∥∥∥
Lp(Rn)

≤ Cp
∥∥∥(∑

j∈Z
|fj |2

)1/2∥∥∥
Lp(Rn)

.

The same results hold for the operator gψ,S.

In order to prove Theorem 4.1, we need the following lemma, which can be
proved by the arguments similar to those used in deriving [17, Lemma7].
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Lemma 4.2. Let λ > 1. Then there exists a constant Cλ,n such that for any
nonnegative locally integrable function g on Rn,∫

Rn
(g∗ψ,λ(f)(x))2g(x)dx ≤ Cλ,n

∫
Rn

(gψ(f)(x))2M(g)(x)dx.

Next we prove Theorem 4.1.

Proof of Theorem 4.1. We shall adopt the method in [15] to prove (39) since
(40) and (41) are analogues. Fix 2 ≤ p < ∞ and set q = (p/2)′. Denote by
X the set of all Schwartz functions h defined on R with

∫∞
0
h(r)p̃0rn−1dr ≤ 1.

We can write

‖g∗ψ,λ(f)‖2Lp|x|L2
θ(Rn) =

(∫ ∞
0

(∫
Sn−1

(
g∗ψ,λ(f)(rθ)

)2
dσ(θ)

)p/2
rn−1dr

)2/p

= sup
h∈X

∫ ∞
0

∫
Sn−1

(
g∗ψ,λ(f)(rθ)

)2
h(r)rn−1dσ(θ)dr(42)

= sup
h∈X

∫
Rn

(
g∗ψ,λ(f)(x)

)2
h(|x|)dx.

For g ∈ X, let

I(h) :=

∫
Rn

(
g∗ψ,λ(f)(x)

)2
h(|x|)dx.

Invoking Lemma 4.2 and using Hölder’s inequality and Theorem 1.2, we get

I(h) ≤ Cλ,n

∫
Rn

(
gψ(f)(x)

)2
M(h)(x)dx

= Cλ,n

∫ ∞
0

∫
Sn−1

(
gψ(f)(rθ)

)2
dσ(θ)M(h)(r)rn−1dr

≤ Cλ,n

(∫ ∞
0

(∫
Sn−1

(
gψ(f)(rθ)

)2
dσ(θ)

)p/2
rn−1dr

)2/p

×
(∫ ∞

0

(M(h)(r))qrn−1dr
)1/q

≤ Cp,λ,n‖gψ(f)‖2Lp|x|L2
θ(Rn)‖M(h)‖Lq(Rn)

≤ Cp,λ,n‖f‖2Lp|x|L2
θ(Rn).

This together with (42) yields (39).
On the other hand, it is easy to check that

gψ,S(f)(x) ≤ Cλg∗ψ,λ(f)(x).

Combining this with (39)-(41) leads to the conclusions for gψ,S . Then theorem
4.1 is proved. �
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