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A NOTE ON THE W*RNP IN DUAL SPACE

Ju HAN YoOON

0. Introduction

The theory of integration of functions with values in a Banach space
has long been a fruitful area of study. In the eight years from 1933 to
1940, seminal papers in this area were written by Bochner, Gelfand,
Pettis, Birhoff and Phillips. Out of this flourish of activity, two in-
tegrals have proved to be of lasting: the Bochner integral of strongly
measurable function. Through the forty years since 1940, the Bochner
integral has a thriving prosperous history. But unfortunately nearly
forty years had passed until 1976 without a significant improvement
after B. J. Pettis’s original paper in 1938 [cf. 11].

But remarkable progress of the Pettis integral had been achieved
during 1977~1989 by many authors [cf. 2,3,5,7,9,10,11,12,13,16]. Most
of the new understanding of Pettis integral trace itself back to two the-
orems. Probably the most important theorem is Stegall’s observation
[15] that one of Fremlin’s theorem [6] reveals much about the Pettis inte-
gral. The second theorem is Musial’s work [10] on the Radon Nikodym
property for the Pettis integral.

Stegall's observation is that if (Q, X, 1) is perfec- finite measure space
and f: Q — X is Pettis integrable, then the range of the indefinite Pet-
tis integral of f is relatively norm compact. Quickly following Stegall’s
observation to a vector measure, R. F. Geitz [7] characterized Pettis
integral functions on perfect measure spaces answering, by the way,
and old question of Pettis’s [11] about the role of simple functions in
Pettis integration: Let (2, X, ) be a perfect finite measure space. A
bounded function f: 2 — X is Pettis integrable if and only if there is
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a uniformly bounded sequence (f,) of simple functions from  into X
such that lim, z*f, = z*f a.e. for each z* in X*.

A second occurrence that ignited the recent flurry of activity is a
theorem proved in the separable Banach space by Musial [10]. Musial’s
theorem was the first successful approach on the question that Banach
spaces have the Radon Nikodym property for Pettis integral, which is
called the weak Radon Nikodym property by Musial: The dual X*
of a Banach space X has the weak Radon Nikodym property if and
only if X contains no copy of ¢;. Also recently Janika introduced the
weak* Radon Nikodym property by the range extension of the Pettis
integrable function.

Since every Bochner integrable function is Pet:is integrable, every
Banach space with Radon Nikodym property has weak Radon Nikodym
property. Clearly every Banach space with Radon Nikodym property
has a weak* Radon Nikodym property.

But the converse is not true in general. It is well known [5] that
the Radon Nikodym property in a Banach space is hereditary with re-
spect to subspaces, while it is shown [14] that the weak Radon Nikodym
property in a Banach space is not hereditary with respect to subspaces
in general. The remarkable progress of the Rador Nikodym property,
weak Radon Nikodym property and weak* Radon Nikodym property
had been made by many authors [¢f. 5,10,14,17,18]. In 1985, M. Ta-
lagland [18] proved that under Axiom L [18] for & dual Banach space
the weak* Radon Nikodym property is hereditary with respect to sub-
spaces.

In this paper, we introduce a notion of Bourgain Radon Nikodym
property (BRNP) and Bourgain star Radon Nikodym property (B*RNP).
We investigate the relation between the Bourgain Radon Nikodym
property (resp., Bourgain®* Radon Nikodym property) and weak Radon
Nikodym property (resp., weak* Radon Nikodym property.) We prove
that a Banach space X* has the Bourgain Radon Nikodym property
if and only if every subspace of X* has the Bourgain Radon Nikodym
property. Using this result, we show that for dual Banach space X * with
Radon Nikodym property (resp, Weak* Radon Nikodym property) is
hereditary with respect to subspaces.
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I. Definitions and Preliminaries

Let (2,3, 1) be a finite measure space and let X be a Banach space
whose dual space is X* and bidual space X**. Let Bx = {z €
X :|lz]] £ 1}. A function f: Q — X is called simple if there exist
r1,%9,...,2,in X and E;, Ey, ..., E, is ¥ such that f = Z?:l TiXE;
where x g, i1s the characteristic function of E;. A function f: @ — X is
called strongly measurable if there exists a sequence of simple functions
(fn) with lim, ||fn — fll = 0 p-a.e. A functionn f: @ — X is called
weakly measurable if 2* f is measurable for each * in X*. A function
f: 2 — X*is called weak® measurable if zf 15 measurable for each
reX.

DEFINITION 1.1. A strongly measurable function f: @ — X is called

Bochner integrable if there is a sequence (f,) of simple function such
that

im [ 1= flldu =0,

In this case, fE fdp is defined for each measurable set E by

/fduzlim/fndu.
E " JE

DEFINITION 1.2, Let (Q2,%, 1) be a finite measure space and X be
a Banach space. Suppose that f: @ — X is a weakly measurable
function and z*f € Ly(p) for each z* in X*. Then f is called Dunford
integrable. The Dunford integral of f over a set &~ in £ is defined to be
the element z3* in X** such that z3(z*) = fEx*f du for each z* in
X* and we write 23" = (D) — [ fdu. If (D) — [ f du is an element of
X for every set E in ¥, then f is called Pettis integrable. In this case,
in order to denote the Pettis integral of f over u set E in ¥, we write

(P)— [ fduin place of (D) — [, f du.

It follows from definition 1.2. that a weakly measurable function
f: @ — X is Pettis integrable if and only if for every set E in ©
there is an element in X, denoted fE f du, which satisfies o* fE fdu=

279



Ju Han Yoon

fEJ,'*f dp for every z* in X*. Naturally the Dunford and Pettis inte-
grable coincide whenever X is reflexive. But when X is not reflexive,
this is may not be the case. There is a Dunford integrable function that
1s not Pettis integrable [1].

B.J. Pettis[11] gave the following characterization of strong measur-
ability.

THEOREM 1.3 [PETTIS’S MEASURABILITY THEOREM]. A function
f: 8 — X is strongly measurable if and only if f is u-essentially sep-
arably valued (i.e. there exists E in © with u(E) = 0 and such that
f(Q\ E) is a norm separable set of X ) and f is weakly measurable.

The following definitions are found in [18].

DEFINITION 1.4. Let (2,X, 1) be a finite measure space and let X
be a Banach space and let T: L,(g) — X be bounded linear operator.
A function ¢: 2 — X is called a Pettis density for T if it is Pettis
integrable, scalarly bounded and < T(g),z* >= [3<z*,¢> du for
all z* in X* and all g in L(pu).

Also, a Pettis density which is a strongly measurable is called a
Bochner density.

DEFINITION 1.5. A Banach space X has the Radon Nikodym prop-
erty (RNP) if each bounded linear operator T: L([0,1], £, #) — X has

a Bochner density, where X is Lebesgue measure.

DEFINITION 1.6. A Banach space X has the weak Radon Nikodym
property (WRNP) if each bounded linear operator 7: L,([0,1], %, u) —
X has a Pettis density.

DEFINITION 1.7. A Banach space X has the weak* Radon Nikodym
property (W*RNP) if each bounded linear operator 7': L;([0,1], 2, ) —
X has a Pettis density ¢ with values in X **.

In the notion of Bourgain property of real valued functions was for-
mulated by J. Bourgain [1]. The Bourgain property of real valued
functions is the cornerstone of our discussion in this paper.

DEFINITION 1.8. Let (2,Z,u) be a measure space. A family 1
of real function on § is called to have the Bourgain property if the
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following condition is satisfied: For each set A of positive measure
and for each a > 0, there is a finite collection F of subsets of posi-
tive measure of A such that for each function f in %, the inequality

sup f(B) — inf f(B) < a holds for some member B of F.

The following theorem is found in [13], which is due to J. Bourgain
[1], essentially allows us to do this for some functions.

THEOREM 1.9. Let (2,3, ) be a finite measure space and i be a
famliy of real function on ) satisfying the Bourgain property. Then:
(a) The pointwise closure of i satisfies the Bourgain property.
(b) Each element in the pointwise closure of ) is measurable.
(c) Each element in the pointwise closure of v’ is the almost every-
where pointwise limit of a sequence from .

In this paper, ([0,1],%,A) denotes a Lebesguc measure space and
(£2,%, 1) denotes a finite measure space. All notions and notations
used and not defined in this paper can be found in [5], [4], and [18].

II. Weak* Radon Nikodym Property

It is well known [5] that the Radon Nikodym property in a Banach
space is hereditary with respect to subspace, while the weak Radon
Nikodym property in a Banach space is not hereditary with respect
to subspace in general. In [14], Linderstrauss and Stegrall have con-
structed a separable Banach space X which lacks the Radon Nikodym
property, X** has the weak Radon Nikodym property. Since X is
separable and lacks the Radon Nikodym property, X lacks the weak
Radon Nikodym property. Hence X C X** is the subspace of weak
Radon Nikodym property which lacks the weak Radon Nikodym prop-
erty. Also, since Bochner integrable function is Pettis integrable, every
Banach space with Radon Nikodym property has weak Radon Nikodym
property. Clearly, every Banach space with weak Radon Nikodym prop-
erty has weak* Radon Nikodym property. By Pettis measurability the-
orem, for a separable Banach space, the Radon Nikodym property and
weak Radon Nikodym property are equivalent. [f a Banach space is
reflexive space, then the weak Radon Nikodym propertycoincide with
weak* Radon Nikodym property.
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The following definitions and proposition are found in [18].

DEFINITION 2.1. Let X = Y* be a Banach space. We say that a
bounded linear operator T': L;(Q, %, i) — X has a weak* density ¢ if
¢: 1 — X is weak™* scalarly measurable, weak* scalarly bounded and

<z,7T{(g) >:/g<x,¢> dy forallz €Y andallge Li(u).

DEFINITION 2.2. Let M(u) be the set of yu—measurable functions.
Let p: Loo(p) — M(p) be a function that is linear, multiplicative,
positive such that p(1) = 1 and such that p(f) belongs to the class of
f for each f € L. (g). the pis called a lifting of L o(u).

ProPposiTioN 2.3. Let X = Y*, Y be a Banach space and let
T: Li(ux) — X be a bounded linear operator. Then T has a weak*
density.

Proof. Let p be a lifting of L (u). For z € F, the function ¢ —
< x,T(g) > is a linear functional f, on L{(u), of norm < ||T|, so it
belongs to L. (u). We define ¢(t) by < z,¢(t) >= p(f:)(t) for all
x € F. This defines an element of X of norm < ||T||. Moreover, for
g€ Lo(p), [g<z,6> du= [gfedu=<2z,T(g)>,s0 ¢is a weak*
density for T.

It is also known [18] that for any weak* scalarly bounded function
f: @ — X =Y, there exists a bounded function ¢: 2 — X so that for
everyr € Y.z f = xg a.e., so every bounded linear operator T': L;(u) —
X = Y™ has a bounded weak* density.

Now we define new notion.

DEFINITION 2.4. Let Y be a Banach space and .X = Y*. X is called
to have Bourgain Radon Nikodym property(BRNP) if every bounded
linear operator T': L;({0,1],%,A) — X has a bounded weak* density
valued in X that has the Bourgain property.

DeFINITION 2.5. Let X be a Banach space. X is called to have
Bourgain* Radon Nikodym property(B*RNP) if every bounded linear
operator T: Ly([0,1],2,A) — X has a bounded weak* density with
values in X ** that has the Bourgain property.
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Since X is reflexive, then X * is reflexive. Hence the Bourgain Radon
Nikodym property coincide with the Bourgain* Radon Nikodym prop-
erty whenever X is reflexive Banach space. Clearly the Bourgain*
Radon Nikodym property in X * implies the Bourgain* Radon Nikodym
property.

We will show that Bourgain Radon Nikodym propertyis always hered-
itary with respect to subspaces. To do so, we need some preliminaries.

Let (m,)n>1 be a sequence of the dyadic partition of [0.1] and =,
denote the o-algebra generated by 7,.. Let X be 4 Banach space and let
f:[0,1] — X* be a bounded function that is weak* scalarly measurable.
Consider the X* valued martingale (f,,~,) where f,, denoted by

w* - d
faly=Y ——;(Lf;‘{—c—“ als).
Aem,

In [13]. If f has the Bourgain property, the family {< f,,z >:n €
N, |lz]| € 1} has the Bourgain property. Let T: L,([0.1], %, ) — X be
a bounded linear operator and let

T .

A€m,

be its associated martingale.

LEMMA 2.6. The bounded linear operator T: L,[0,1] — X* has a
bounded weak* density in X* that has the Bourgain property if and
only if the set H = {< gn,x >: x € X,||z|| < 1,n > 1} has Bourgain
property.

Proof. We can suppose |T|| = 1. If T has a bounded weak* density
f:[0,1] > X* that has the Bourgain property, then

~ T\,
)= Y TR )

A€m,

_ Z w* — [, fdu |

aA) Y

—
—

Aem,

= fn()
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Apply ([13] p 527) to see that H = {< gn,z >: 2 € X,||z]| < 1,n >
1} has the Bourgain property. Conversely, suppose that the H has
Bourgain property. Let g be a cluster point of the sequence (g,) in
B[)g’.l]. Let y € X, ||ly|| <1, then yg belongs to the pointwise closure of
the set | {< g,y >: n > 1} which has the Bourgain property since
it is a subset and there is a subsequence (g,,) such that y(g(t)) =
limg ygn, (t) a.e. --- (*). Let hy be a Radon Nikodym derivative of y7T
with respect to the Lebesgue measure A. The sequence

Yom ()= Y y—f{%‘—)xﬁx(-)
A€My, ’

converges in L1(A) to hy, therefore for any Borel set B in [0,1], limy [z y
Ini A = [phydu = y(T(x)). But by (*) limg [ ygn, du = [, ygdu.
Hence [pygdu = y(T(xB)) = <y,T(Xp)>. This show that g is a
bounded weak* density of 7. To finish the proof, notice that the set
M = {zg: ||z|| <1} isincluded in the pointwise closure of H. Hence M
has Bourgain property. Consequently 7' has a bounded weak* density
g valued in X* that has the Bourgain property.

THEOREM 2.7. Let X be a Banach space. Then the dual space X*
has Bourgain Radon Nikodym property if and only If every subspace of
dual space X* has Bourgain Radon Nikodym property.

Proof. Let Y be a closed subspace of X* and let T: L;[0,1] —» Y
be a bounded linear operator and (g, ),>; be its associated martingale.
To see that T has a bounded weak* density ¢ valued in ¥ that has
the Bourgain property, it is enough to show that the set Ly = {<
gn,x >: z € X,||z|| £ 1,7 > 1} ha the Bourgain property and apply
lemma 2.6. Since X* has the Bourgain Radon Nikodym property and
T: Li[0,1] - Y C X* By lemma 2.6, {< gp,x >: 2 € X,||z]| <
1,n > 1} has the Bourgain property. thus ¥ has the Bourgain Radon
Nikodym property. Conversely it is clear.

THEOREM 2.8. Let X be a Banach space. The following statements
are equivalent.

(a) The dual space X* has weak Radon Nikodym property.

284



A note on the W*RNP in dual space

(b) The dual space X* has weak® Radon Nikodym property.
(c) The dual space X* has Bourgain Radon Nikodym property.

Proof. In [19], Theorem 2.4, (a) and (b) are equivalent. Also, in [20],
Theorem 3.2, (c) implies (b) and clearly (d) implies (c). To see that (a)
implies (d). Let T': L;[0,1] — X* be a bounded linear operator. Let
f:]0,1] - X* be a bounded weak* density of T. For every n > 1, let

T(x 4
ful) = 30 T2 )
A€m, ’

_ Z 'w*—fAfd)\

/\(A) xal+)

A€Er,

be the martingale associated to T. By lemma 2.€., it is enough to show
that {< fn.z >: 2z € X,||z]| < 1,n > 1} has the Bourgain property.
If {< fo,o >: 2 € X,|z]| <1,n > 1} does not have the Bourgain
property, then there exists a sequence (z,) in X, |lz,]| <1 so that the
sequence (< f,,z, >)is equivalent to the ¢; basis in L. This implies
that (r,) is equivalent to the ¢; basis in X but this is impossible since
X* has weak Radon Nikodym property.

COROLLARY 2.9. Let X be a Banach space. Then the dual space
X* has weak Radon Nikodym property if and only if every subspace of
X* has weak Radon Nikodym property.

Proof. Suppose that X* has weak Radon Nikodym property, by the-
orem 2.8., then X* has the Bourgain Radon Nikodym property. By
theorem 2.7 every subspace of X* has the Bourgain Radon Nikodym
property and from theorem 2.8 every subspace of X* has the weak
Radon Nikodym property. Also conversely it is clear.

COROLLARY 2.10. Let X be a Banach space. Then the dual space
X has weak* Radon Nikodym property if and only if every subspace
of X* has weak* Radon Nikodym property.

Proof. See theorem 2.8 and corollary 2.9.
The following theorem is found in [10].
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THEOREM 2.11 [K. MusIAL]. Let X be separable Banach space.
Then the following statements are equivalent.

(a)
(b)
(c)

(d)

X does not contain any isomorphic copy of €.

X* has the weak Radon Nikodym property.

For any measure space (2,3, u), let f: § — X* be weak*
measurable function. Then f is weakly measurable function.
For any measure space (2,%,p), let f: © — X* be weak®
measurable function. Then f is Pettis integrable.

The following corollary 2.12 can be obtained frcm the theorem 2.8
and the theorem 2.11.

COROLLARY 2.12. Let X be separable Banach space. Then the
following statements are equivalent.

(a)
(b)
(c)

(d)

X does not contain any isomorphic copy of €.

X* has the weak Radon Nikodym property.

For any measure space (Q,%,u). Let f: 1 — X* be weak”
measurable function. Then f is weakly measurable function.
For any measure space (2,5, u). Let f: ) — X* be weak*
measurable function. Then f is Pettis integrable.

X* has weak* Radon Nikodym property.

X* has Bourgain* Radon Nikodym property.

X* has Bourgain Radon Nikodym property.
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