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RELATIONSHIP BETWEEN THE WIENER INTEGRAL
AND THE ANALYTIC FEYNMAN INTEGRAL OF

CYLINDER FUNCTION

Byoung Soo Kim*

Abstract. Cameron and Storvick discovered a change of scale for-
mula for Wiener integral of functionals in a Banach algebra S on
classical Wiener space. We express the analytic Feynman integral
of cylinder function as a limit of Wiener integrals. Moreover we
obtain the same change of scale formula as Cameron and Storvick’s
result for Wiener integral of cylinder function. Our result cover a
restricted version of the change of scale formula by Kim.

1. Introduction

Let C0[0, T ] denote the Wiener space, that is, the space of real valued
continuous functions x on [0, T ] with x(0) = 0. Let M denote the class
of all Wiener measurable subsets of C0[0, T ] and let m denote Wiener
measure. Then (C0[0, T ],M,m) is a complete measure space and we
denote the Wiener integral of a functional F by

(1.1)
∫

C0[0,T ]
F (x) dm(x).

A subset E of C0[0, T ] is said to be scale-invariant measurable [7]
provided ρE is measurable for each ρ > 0, and a scale-invariant mea-
surable set N is said to be scale-invariant null provided m(ρN) = 0 for
each ρ > 0. A property that holds except on a scale-invariant null set is
said to hold scale-invariant almost everywhere (s-a.e.).
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Let C+ denote the set of complex numbers with positive real part.
Let F be a complex valued measurable functional on C0[0, T ] such that
the Wiener integral

(1.2) JF (λ) =
∫

C0[0,T ]
F (λ−1/2x) dm(x)

exists as a finite number for all λ > 0. If there exists a function J∗F (λ)
analytic in C+ such that J∗F (λ) = JF (λ) for all λ > 0, then J∗F (λ)
is defined to be the analytic Wiener integral of F over C0[0, T ] with
parameter λ, and for λ ∈ C+ we write

(1.3)
∫ anwλ

C0[0,T ]
F (x) dm(x) = J∗F (λ).

If the following limit exists for nonzero real number q, then we call it
the analytic Feynman integral of F over C0[0, T ] with parameter q and
we write

(1.4)
∫ anfq

C0[0,T ]
F (x) dm(x) = lim

λ→−iq

∫ anwλ

C0[0,T ]
F (x) dm(x)

where λ approaches −iq through C+.
It has long been known that Wiener measure and Wiener measurabil-

ity behave badly under the change of scale transformation [2] and under
translations [1]. Cameron and Storvick [5] expressed the analytic Feyn-
man integral on classical Wiener space as a limit of Wiener integrals.
In doing so, they discovered nice change of scale formula for Wiener
integral on classical Wiener space (C0[0, T ],m) [4] as follows.∫

C0[0,T ]
F (ρx) dm(x)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x),
(1.5)

where {φ1, φ2, . . .} is a complete orthonormal set of functionals in L2[0, T ],
ρ > 0 and F is a functional in a Banach algebra S introduced by
Cameron and Storvick [3].

In [10, 11], Yoo and Skoug extended these results to an abstract
Wiener space (H, B, ν). Moreover Yoo, Song, Kim and Chang [12, 13]
established a change of scale formula for Wiener integrals of some un-
bounded functionals on abstract Wiener space and on a product of ab-
stract Wiener space. Recently Yoo, Kim and Kim [9] obtained a change
of scale formula for a function space integral on a generalized Wiener
space Ca,b[0, T ].
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On the other hand, Kim [8] established a change of scale formula for
cylinder functions on abstract Wiener space B. That is, for F (x) =
f((h1, x)∼, . . . , (hn, x)∼), he proved that

(1.6)
∫

B
F (ρx) dν(x) = ρ−n

∫

B
exp

{ρ2 − 1
2ρ2

n∑

k=1

[(hk, x)∼]2
}

F (x) dν(x),

where {h1, . . . , hn} is an orthonormal set in H and ρ > 0.
Note that in the change of scale formula (1.5) by Cameron and Stor-

vick, {φ1, φ2, . . .} may be any complete orthonormal set of functionals
in L2[0, T ] and it requires the limiting procedure. While in the change
of scale formula (1.6) by Kim, it does not require the limiting procedure
but {h1, . . . , hn} in the exponential of the integrand must be the same
as the elements used to define the cylinder function F .

In this paper, we express the analytic Feynman integral of cylinder
function as a limit of Wiener integrals on C0[0, T ]. And we obtain the
original version (1.5) of a change of scale formula for Wiener integral of
cylinder function. Of course the changle of scale formula (1.6) can be
obtained as a corollary of our result.

Now we will introduce the class of functionals that we work with in
this paper. Let α be a nonzero function with ‖α‖ = 1 in L2[0, T ]. For
1 ≤ p < ∞ let A(p) be the space of all functionals F on C0[0, T ] of the
form

(1.7) F (x) = f(〈α, x〉)
for s-a.e. x in C0[0, T ], where f : R → R is in Lp(R) and 〈α, x〉 denote
the Paley-Wiener-Zygmund stochastic integral

∫ T
0 α(t) dx(t). Let A(∞)

be the space of all functionals of the form (1.7) with f ∈ C0(R), the
space of bounded continuous functions on R that vanish at infinity. For
simplicity, we restrict our attention to the cylinder function (1.7) which
depends on a single function α.

Let g : Rn → R be a Lebesgue measurable function and let {φ1, . . . , φn}
be an orthonormal set in L2[0, T ]. Then the following Wiener integra-
tion formula is a very fundamental integration formula to study Wiener
and Feynman integration theories.

∫

C0[0,T ]
g(〈φ1, x〉, . . . , 〈φn, x〉) dm(x)

= (2π)−n/2

∫

Rn

g(u1, . . . , un) exp
{
−1

2

n∑

k=1

u2
k

}
du1 · · · dun

(1.8)
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in the sense that if either side exists, then both sides exist and equality
holds.

We close this section by introducing the analytic Wiener and the
analytic Feynman integrals of the cylinder function. One can find the
results in, for example, [6].

Theorem 1.1. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7).
Then for all λ ∈ C+, F is analytic Wiener integrable and

(1.9)
∫ anwλ

C0[0,T ]
F (x) dm(x) =

( λ

2π

)1/2
∫

R
f(u) exp

{
−λ

2
u2

}
du.

Furthermore, if F ∈ A(1), then F is analytic Feynman integrable and

(1.10)
∫ anfq

C0[0,T ]
F (x) dm(x) =

(
− iq

2π

)1/2
∫

R
f(u) exp

{ iq

2
u2

}
du

for all nonzero real number q.

2. Relationship between the Wiener integral and the ana-
lytic Feynman integral of cylinder function

In this section we give a relationship between the Wiener integral and
the analytic Feynman integral on C0[0, T ] for cylinder function, that is,
we express the analytic Feynman integral of functional of the form (1.7)
as a limit of Wiener integrals on C0[0, T ]. We begin this section by
introducing a generalized Chapman-Kolmogorov equation.

Theorem 2.1 (Generalized Chapman-Kolmogorov equation). Let a
and b be positive real numbers. Then we have∫

R
exp{−a(w − v)2 − b(v − u)2} dv

=
( π

a + b

)1/2
exp

{
− ab

a + b
(w − u)2

}
.

(2.1)

Proof. We begin by considering the exponential of the integrand in
(2.1), but without the minus sign. This is a quadratic function of v and,
by completing the square, we obtain

a(w − v)2 + b(v − u)2 = (a + b)
(
v2 − 2(aw + bu)

a + b
v
)

+ aw2 + bu2

= (a + b)
(
v − aw + bu

a + b

)2
+

ab

a + b
(w − u)2.
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Using the above equation and the translation invariance of the Lebesgue
integral, we see that the left hand side of (2.1) equals

exp
{
− ab

a + b
(w − v)2

}∫

R
exp

{
−(a + b)

(
v − aw + bu

a + b

)2}
dv

=
( π

a + b

)1/2
exp

{
− ab

a + b
(w − u)2

}
,

where the last equality follows from the well known integration formula∫
R exp{−k2v2} dv =

√
π/k.

We next introduce an integration formula which is useful in the
proof of Theorem 2.4. Although equation (2.3) below holds even if
{φ1, . . . , φn, α} is linearly dependent (see Remark 2.3 below), we assume
for a moment that {φ1, . . . , φn, α} is linearly independent in Lemma 2.2.

Lemma 2.2. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7),
where ‖α‖ = 1. Let {φ1, . . . , φn} be an orthonormal set in L2[0, T ] and
let λ ∈ C+. Then the functional

(2.2) exp
{1− λ

2

n∑

k=1

〈φk, x〉2
}

F (x)

is Wiener integrable on C0[0, T ] and
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x)

= (2π)−1/2λ−(n−1)/2C
−1/2
n,λ

∫

R
exp

{
− λ

2Cn,λ
v2

}
f(v) dv,

(2.3)

where

(2.4) ck = 〈φk, α〉
for k = 1, 2, . . . , n and Cn,λ = (1− λ)(c2

1 + · · ·+ c2
n) + λ.

Proof. Since F is measurable, it is only necessary to prove that the
Wiener integral of functional in (2.2) is finite. But this is obvious if we
show (2.3). By the Gram-Schmidt process, we obtain φn+1 ∈ L2[0, T ]
such that {φ1, . . . , φn+1} is an orthonormal set in L2[0, T ] and

α =
n+1∑

k=1

ckφk,

where ck for k = 1, . . . , n are given as in (2.4) and
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cn+1 =
(
1−

n∑

j=1

〈φj , α〉2
)1/2

.

Assume that λ > 0 and let K be the Wiener integral on the left hand
side of (2.3). Then by (1.7),

K =
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

〈φk, x〉2
}

f
(n+1∑

k=1

ck〈φk, x〉
)

dm(x).

By the Wiener integration formula (1.8),

K = (2π)−(n+1)/2

∫

Rn+1

exp
{1− λ

2

n∑

k=1

u2
k −

1
2

n+1∑

k=1

u2
k

}

f
(n+1∑

k=1

ckuk

)
du1 · · · dun+1.

Now we evaluate the last integral by changing variables, that is, let

vk =
k∑

j=1

cjuj , k = 1, 2, . . . , n + 1.

Then
uk =

1
ck

(vk − vk−1), k = 1, 2, . . . , n + 1,

where v0 = 0, and the Jacobian is given by

∂(u1, . . . , un+1)
∂(v1, . . . , vn+1)

=
1

c1 · · · cn+1
.

Hence

K = (2π)−(n+1)/2 1
c1 · · · cn+1

∫

Rn+1

exp
{
−λ

2

n∑

k=1

(vk − vk−1)2

c2
k

− 1
2

(vn+1 − vn)2

c2
n+1

}
f(vn+1) dv1 · · · dvn+1.

Using the generalized Chapman Kolmogorov equation (2.1), we evaluate
the last integral with respect to v1, . . . , vn−1 to obtain

K = (2π)−2/2λ−(n−1)/2[(c2
1 + · · ·+ c2

n)c2
n+1]

−1/2

∫

R2

exp
{
− λv2

n

2(c2
1 + · · ·+ c2

n)
− (vn+1 − vn)2

2c2
n+1

}
f(vn+1) dvn dvn+1.
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Applying the generalized Chapman Kolmogorov equation once more, we
have

K = (2π)−1/2λ−(n−1)/2(c2
1 + · · ·+ c2

n + λc2
n+1)

−1/2

∫

R
exp

{
− λ

2(c2
1 + · · ·+ c2

n + λc2
n+1)

v2
n+1

}
f(vn+1) dvn+1.

Finally by the definition of ck for k = 1, . . . , n + 1, we have c2
1 + · · · +

c2
n + λc2

n+1 = Cn,λ and so we know that (2.3) is valid for all λ > 0. But
each side of (2.3) is an analytic function of λ ∈ C+. By the uniqueness
of the analytic extension, we conclude that (2.3) holds for all λ ∈ C+

and this completes the proof.

Remark 2.3. Suppose that {φ1, . . . , φn, α} is linearly dependent in
Lemma 2.2. Then cn+1 = 0 and

α =
n∑

k=1

ckφk,

where ck = 〈φk, α〉 for k = 1, . . . , n. Moreover c2
1 + · · · + c2

n = 1 and
Cn,λ = 1. In this case, the K in the proof of Lemma 2.2 can be simplified
as

K =
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

〈φk, x〉2
}

f
( n∑

k=1

ck〈φk, x〉
)

dm(x)

= (2π)−n/2

∫

Rn

exp
{
−λ

2

n∑

k=1

u2
k

}
f
( n∑

k=1

ckuk

)
du1 · · · dun.

By changing variables

vk =
k∑

j=1

cjuj , k = 1, 2, . . . , n,

we have that

K = (2π)−n/2 1
c1 · · · cn

∫

Rn

exp
{
−λ

2

n∑

k=1

(vk − vk−1)2

c2
k

}
f(vn) dv1 · · · dvn.

We evaluate the last integral using the generalized Chapman Kolmogorov
equation to obtain

K = (2π)−1/2λ−(n−1)/2

∫

R
exp

{
−λ

2
v2

}
f(v) dv.

But this is the same as (2.3) when Cn,λ = 1. Hence we conclude that
(2.3) is true whether {φ1, . . . , φn, α} is linearly independent or not.
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Now we give a relationship between the analytic Feynman integral
and the Wiener integral on C0[0, T ] for functionals of the form (1.7). In
this theorem we express the analytic Feynman integral of functionals of
the form (1.7) as a limit of Wiener integrals.

Theorem 2.4. Let F ∈ A(1) be given by (1.7), where ‖α‖ = 1. Let
{φ1, φ2, . . .} be a complete orthonormal set of functionals in L2[0, T ].
Let q be a nonzero real number and let {λ1, λ2, . . .} be a sequence of
complex numbers in C+ such that λn → −iq. Then we have

∫ anfq

C0[0,T ]
F (x) dm(x)

= lim
n→∞λn/2

n

∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x).
(2.5)

Proof. Let Γ(λn) be the Wiener integral on the right hand side of
(2.5). Then by Lemma 2.2,

lim
n→∞λn/2

n Γ(λn) = lim
n→∞

(λn

2π

)1/2
C
−1/2
n,λn

∫

R
exp

{
− λn

2Cn,λn

v2
}

f(v) dv.

As we described in Remark 2.3, if α can be expressed as a finite linear
combination of {φ1, φ2, . . .}, then Cn,λn = 1 in the last expression. Since
{φ1, φ2, . . .} is a complete orthonormal set of functionals in L2[0, T ], by
the Parseval’s identity, we have Cn,λn → ‖α‖ = 1 as n →∞. Moreover
since f ∈ L1(R) we apply the dominated convergence theorem to obtain

lim
n→∞λn/2

n Γ(λn) =
(
− iq

2π

)1/2
∫

R
exp

{ iq

2
v2

}
f(v) dv.

By (1.10) in Theorem 1.1 it follows that (2.5) holds and the theorem is
proved.

Although relationship (2.5) holds whether {α, φ1, φ2, . . .} is linearly
independent or not, we restate the relationship when {α, φ1, φ2, . . .} is
linearly dependent in the following corollary as it is given in Theorem
3.4 of [8].

Corollary 2.5. Let F ∈ A(1) be given by (1.7), where ‖α‖ = 1.
Let l be a positive integer and let {φ1, . . . , φl} be an orthonormal set
of functionals in L2[0, T ] such that {φ1, . . . , φl, α} is linearly dependent.
Let q be a nonzero real number and let {λ1, λ2, . . .} be a sequence of
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complex numbers in C+ such that λn → −iq as n →∞. Then we have

∫ anfq

C0[0,T ]
F (x) dm(x)

= lim
n→∞λl/2

n

∫

C0[0,T ]
exp

{1− λn

2

l∑

k=1

〈φk, x〉2
}

F (x) dm(x).

(2.6)

In Theorem 2.4 and Corollary 2.5 above, since λn goes to −iq, to
pass the limit under the integral sign using the dominated convergence
theorem, we need to restrict the functional F belongs to A(1). But if λn

goes to some value in C+ or λn = λ for all n = 1, 2, . . . for some fixed
λ ∈ C+, then the restriction F ∈ A(1) is not necessary. Of course in
this case we can just say on the analytic Wiener integral but not on the
analytic Feynman integral.

In Theorem 2.6 below we give a relationship between the analytic
Wiener integral and the Wiener integral on C0[0, T ] for functionals of
the form (1.7).

Theorem 2.6. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7),
where ‖α‖ = 1. Let {φ1, φ2, . . .} be a complete orthonormal set of
functionals in L2[0, T ] and let λ ∈ C+. Then we have

∫ anwλ

C0[0,T ]
F (x) dm(x)

= lim
n→∞λn/2

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x).
(2.7)

Proof. To prove this theorem, we modify the first part of the proof
of Theorem 2.4 by replacing λn by λ whenever it occurs. Then we have

lim
n→∞λn/2Γ(λ) = lim

n→∞

( λ

2π

)1/2
C
−1/2
n,λ

∫

R
exp

{
− λ

2Cn,λ
v2

}
f(v) dv.

Since f belongs to Lp(Rn) and Reλ > 0, we apply the dominated con-
vergence theorem to obtain

lim
n→∞λn/2Γ(λ) =

( λ

2π

)1/2
∫

R
exp

{
−λ

2
v2

}
f(v) dv.

By (1.9) in Theorem 1.1 the proof is completed.
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If {φ1, . . . , φn, α} is linearly dependent for some n = 1, 2, . . ., then
Cn,λ = 1 in the proof of Theorem 2.6 and so

λn/2Γ(λ) =
( λ

2π

)1/2
∫

R
exp

{
−λ

2
v2

}
f(v) dv =

∫ anwλ

C0[0,T ]
F (x) dm(x),

that is, we need not the limit in (2.7). Hence we have the following
corollary which is given in Theorem 3.3 of [8].

Corollary 2.7. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7),
where ‖α‖ = 1. Let n be a positive integer and let {φ1, . . . , φn} be an
orthonormal set of functionals in L2[0, T ] such that {φ1, . . . , φn, α} is
linearly dependent. Let λ ∈ C+. Then we have
(2.8)∫ anwλ

C0[0,T ]
F (x) dm(x) = λn/2

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x).

Our main result, namely a change of scale formula for Wiener integral
of cylinder function on C0[0, T ] now follows from Theorem 2.6.

Theorem 2.8. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7),
where ‖α‖ = 1. Let {φ1, φ2, . . .} be a complete orthonormal set of
functionals in L2[0, T ]. Then we have

∫

C0[0,T ]
F (ρx) dm(x)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x)
(2.9)

where ρ > 0.

Proof. By letting λ = ρ−2 in (2.7) we obtain (2.9).

Note that the change of scale formula (2.9) for cylinder function on
Wiener space is the same as the Cameron and Storvick’s change of scale
formula for Wiener integral of functionals in a Banach algebra S in [4].

If {φ1, . . . , φn, α} is linearly dependent for some n = 1, 2, . . ., then by
letting λ = ρ−2 in (2.8) we have the following corollary which is given
in Theorem 3.5 of [8]. In fact, Kim considered in [4] the case φ1 = α.

Corollary 2.9. Let 1 ≤ p ≤ ∞ and let F ∈ A(p) be given by (1.7),
where ‖α‖ = 1. Let n be a posiitve integer and let {φ1, . . . , φn} be an
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orthonormal set of functionals in L2[0, T ] such that {φ1, . . . , φn, α} is
linearly dependent. Then we have
(2.10)∫

C0[0,T ]
F (ρx) dm(x) = ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

〈φk, x〉2
}

F (x) dm(x)

where ρ > 0.
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