• Title/Summary/Keyword: full adder

Search Result 47, Processing Time 0.029 seconds

Full-Search Block-Matching Motion Estimation Circuit with Hybrid Architecture for MPEG-4 Encoder (하이브리드 구조를 갖는 MPEG-4 인코더용 전역 탐색 블록 정합 움직임 추정 회로)

  • Shim, Jae-Oh;Lee, Seon-Young;Cho, Kyeong-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • This paper proposes a full-search block-matching motion estimation circuit with hybrid architecture combining systolic arrays and adder trees for an MPEG-4 encoder. The proposed circuit uses systolic arrays for motion estimation with a small number of clock cycles and adder trees to reduce required circuit resources. The interpolation circuit for 1/2 pixel motion estimation consists of six adders, four subtracters and ten registers. We improved the circuit performance by resource sharing and efficient scheduling techniques. We described the motion estimation circuit for integer and 1/2 pixels at RTL in Verilog HDL. The logic-level circuit synthesized by using 130nm standard cell library contains 218,257 gates and can process 94 D1($720{\times}480$) image frames per second.

Design of a High Performance Multiplier Using Current-Mode CMOS Quaternary Logic Circuits (전류모드 CMOS 4치 논리회로를 이용한 고성능 곱셈기 설계)

  • Kim, Jong-Soo;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.1-6
    • /
    • 2005
  • This paper proposes a high performance multiplier using CMOS multiple-valued logic circuits. The multiplier based on the Modified Baugh-Wooley algorithm is designed with current-mode CMOS quaternary logic circuits. The multiplier is functionally partitioned into the following major sections: partial product generator block(binary-quaternary logic conversion block), current-mode quaternary logic full-adder block, and quaternary-binary logic conversion block. The proposed multiplier has 4.5ns of propagation delay and 6.1mW of power consumption. This multiplier can easily adapted to the binary system by the encoder and the decoder. This circuit is designed with 0.35um standard CMOS process at 3.3V supply voltage and 5uA unit current. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

Full-Custom Design of a Compact 17x-17b Multiplier and its Efficient Test Methodology (풀커스텀(full-custom)방식의 17x-17b 곱셈기의 설계와 효율적인 테스트)

  • 문상국;문병인;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.3B
    • /
    • pp.362-368
    • /
    • 2001
  • 본 논문에서는 두 개의 17비트 오퍼랜드를 radix-4 Booths 알고리즘을 이용하여 곱셈 연산을 수행하는 곱셈기를 설계하고 효율적인 풀커스팀 디자인에 대한 테스트 방법을 제안하였다. 클럭 속도를 빠르게 하기 위하여 2단파이프라인 구조로 설계하고 규칙적인 레이아웃을 위해 4:2 CSA(Carry Save Adder)를 사용하였다. 회로는 LG 반도체의 0.6-um 3-Metal N-well CMOS 공정을 사용하여 칩으로 제작되었다. 새로운 개념의 모듈레벨 고착 고장 모델을 제안하였고 제안한 테스트 방법을 사용하여 관찰해야 하는 노드의 수를 약 88% 줄여 효율적인 고장 시뮬레이션을 수행하였다. 설계된 곱셈기는 9115개의 트랜지스터로 구성되며 코어 부분의 레이아웃 면적은 약 1135*1545 um2 이다. 제작된 칩은 전원접압 5V에서 약 24MHz의 클럭 주파수로 동작한다.

  • PDF

A study on the construction of multiple-valued logic functions and full-adders using by the edge-valued decision diagram (에지값 결정도에 의한 다치논리함수구성과 전가계기설계에 관한 연구)

  • 한성일;최재석;박춘명;김흥수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.69-78
    • /
    • 1998
  • This paper presented a method of extracting algorithm for Edge Multiple-Valued Decision Diagrams(EMVDD), a new data structure, from Binary Decision Diagram(BDD) which is resently using in constructing the digital logic systems based on the graph theory. We discussed the function minimization method of the n-variables multiple-valued functions and showed that the algorithm had the regularity with module by which the same blocks were made concerning about the schematic property of the proposed algorithm. We showed the EMVDD of Full Adder by module construction and verified the proposed algorithm by examples. The proposed method has the visible, schematical and regular properties.

  • PDF

Efficient Operator Design Using Variable Groups (변수그룹을 이용한 효율적인 연산기 설계)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, we propose a partial product addition method using variable groups in the design of operators such as multipliers and digital filters. By this method, full adders can be replaced with simple logic circuits. To show the efficiency of the proposed method, we applied the method to the design of squarers and precomputer blocks of FIR filters. In case of 7 bit and 8 bit squarers, it is shown that by the proposed method, area, power and delay time can be reduced up to {22.1%, 20.1%, 14%} and {24.7%, 24.4%, 6.7%}, respectively, compared with the conventional method. The proposed FIR precomputer circuit leads to up to {63.6%, 34.4%, 9.8%} reduction in area, power consumption and propagation delay compared with previous method.

Design of a High Performance 32$\times$32-bit Multiplier Based on Novel Compound Mode Logic and Sign Select Booth Encoder (새로운 복합모드로직과 사인선택 Booth 인코더를 이용한 고성능 32$\times$32-bit 곱셈기의 설계)

  • Kim, Jin-Hwa;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • In this paper, a novel compound mode logic based on the advantage of both CMOS logic and pass-transistor logic(PTL) is proposed. From the experimental results, the power-delay products of the compound mode logic is about 22% lower than that of the conventional CMOS logic, when we design a full adder. With the proposed logic, a high performance 32$\times$32-bit multiplier has been fabricated with 0.6um CMOS technology. It is composed of an improved sign select Booth encoder, an efficient data compressor based on the compound mode logic, and a 64-bit conditional sum adder with separated carry generation block. The Proposed 32$\times$32-bit multiplier is composed of 28,732 transistors with an active area of 1.59$\times$1.68 mm2 except for the testing circuits. From the measured results, the multiplication time of the 32$\times$32-bit multiplier is 9.8㎱ at a 3.3V power supply, and it consumes about 186㎽ at 100MHz.

  • PDF

An Efficient Test Method for a Full-Custom Design of a High-Speed Binary Multiplier (풀커스텀 (full-custom) 고속 곱셈기 회로의 효율적인 테스트 방안)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.830-833
    • /
    • 2007
  • In this paper, we implemented a $17{\times}17b$ binary digital multiplier using radix-4 Booth;s algorithmand proposed an efficient testing methodology for the full-custom design. A two-stage pipeline architecture was applied to achieve higher throughput and 4:2 adders were used for regular layout structure in the Wallace tree partition. Several chips were fabricated using LG Semicon 0.6-um 3-Metal N-well CMOS technology. We did fault simulations efficiently using the proposed test method resulting in the reduction of the number of faulty nodes by 88%. The chip contains 9115 transistors and the core area occupies $1135^*1545$ mm2. The functional tests using ATS-2 tester showed that it can operate with 24 MHz clock at 5.0 V at room temperature.

  • PDF

A Single-Chip Design of Two-Dimensional Digital Riler with CSD Coefficients (CSD 계수에 의한 이차원 디지탈필터의 단일칩설계)

  • 문종억;송낙운;김창민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.241-250
    • /
    • 1996
  • In this work, an improved architecture of two-dimensional digital filter(2D DF) is suggested, and then the filter is simulated by C, VHDL language and related layouts are designed by Berkeley CAD tools. The 2D DF consists of one-dimensional digital filters and delay lines. For one-dimensional digital filter(1D DF) case, once filter coefficients are represented by canonical signed digit formats, multiplications are exected by hardwired-shifting methods. The related bit numbers are handled to prevent picture quality degradation and pipelined adder architectures are adopted in each tap and output stage to speed up the filter. For delay line case, line-sharing DRAM is adopted to improve power dissipation and speed. The filter layout is designed by semi/full custom methods considering regularity and speed improvement, and normal operation is confirmed by simulation.

  • PDF

A Design of 16${\times}$16-bit Redundant Binary MAC Using 0.25 ${\mu}{\textrm}{m}$ CMOS Technology

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • In this paper, a 16${\times}$16-bit Multiplier and Accumulator (MAC) is designed using a Redundant Binary Adder (RBA) circuit so that it can make a fast addition of the Redundant Binary Partial Products (RB_PP's) by using Wallace-tree structure. Because a RBA adds two RB numbers, it acts as a 4-2 compressor, which reduces four inputs to two output signals. We propose a method to convert the Redundant Binary (RB) representation into the 2's complement binary representation. Instead of using the conventional full adders, a more efficient RB number to binary number converter can be designed with new conversion method.

Development of new Multifunction Voltage Recorder (다기능 디지털 전압기록장치 시스템 개발)

  • Shon, Su-Goog;Choi, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.693-696
    • /
    • 1999
  • This paper describes a new voltage recorder for the voltage management of a power distribution line by using a new voltage measurement technique. The RMS(Root Mean Square) voltage measurement for the power line under the assumption of a sinusoidal input voltage is taken by the full-wave rectifier, half-adder utilizing operational amplifier(OP) circuit. A/D converter utilizing a dual slope converter converts an analog voltage signal into a serial pulse. The pulse is counted with a single chip micro-controller, converted with the RMS voltage, and saved into a flash memory. In the last, a new voltage recorder with compact size and multifunction is developed. Also, Voltage Management System that can analyze the stored data via RS-232C cable is developed based on Windows 95 and Visual C++.

  • PDF