• Title/Summary/Keyword: frequency offset tuning

Search Result 126, Processing Time 0.028 seconds

A CMOS Complex Filter with a New Automatic Tuning Method for PHS Application (PHS용 Automatic Tuning 방법을 이용한 Complex Filter)

  • Ko, Dong-Hyun;Park, Do-Jin;Jung, Sung-Kyu;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.17-22
    • /
    • 2007
  • This paper presents a baseband complex bandpass filter for PHS applications with a new automatic tuning method. The full-CMOS PHS transceiver is implemented by adopting the Low-IF architecture to overcome the DCoffset problems. To meet the Adjacent Channel Selectivity (ACS) performance, the 3rd-order Chebyshev complex bandpass filter is designed as the baseband channel-select filter. The new corner frequency tuning method is proposed to compensate the process variation. This method can reduce the noise level due to MOS switches. The filter was fabricated using a 0.35{\mu}m$ CMOS process, and the power consumption is 12mW.

Low Phase Noise CMOS VCO with Hybrid Inductor

  • Ryu, Seonghan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.158-162
    • /
    • 2015
  • A low phase noise CMOS voltage controlled oscillator(VCO) for multi-band/multi-standard RF Transceivers is presented. For both wide tunability and low phase noise characteristics, Hybrid inductor which uses both bondwire inductor and planar spiral inductor in the same area, is proposed. This approach reduces inductance variation and presents high quality factor without custom-designed single-turn inductor occupying large area, which improves phase noise and tuning range characteristics without additional area loss. An LC VCO is designed in a 0.13um CMOS technology to demonstrate the hybrid inductor concept. The measured phase noise is -121dBc/Hz at 400KHz offset and -142dBc/Hz at 3MHz offset from a 900MHz carrier frequency after divider. The tuning range of about 28%(3.15 to 4.18GHz) is measured. The VCO consumes 7.5mA from 1.3V supply and meets the requirements for GSM/EDGE and WCDMA standard.

Design and Fabrication of Wide Electrical Tuning Range DRO Using Open-Loop Method (개루프 방법에 의한 확장된 전기적주파수조정범위를 갖는 유전체공진기발진기의 설계 및 제작)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.570-579
    • /
    • 2009
  • In this paper, we presented a Vt-DRO with a wide electrical frequency tuning range, using open-loop gain method. The Vt-DRO was composed of 3-stages, resonator, amplifier and phase shifter. In order to satisfy an oscillation condition, we determined magnitude and phase of each stage. The measured S-parameter of cascaded 3-stages shows open-loop oscillation condition. Also, using measured open loop group delay, we derived the relation for electrical frequency tuning range. The Vt-DRO was implemented by connecting the input and the output of the designed open-loop and resulted in closed-loop. As a results, tuning-range of Vt-DRO is 82 MHz, which is close to the predicted results for tuning voltage 0${\sim}$10 V and shows linear frequency tuning at the center frequency of 5.3 GHz. The phase noise is -104 ${\pm}$1 dBc/Hz at 100 kHz offset frequency and power is 5.86${\pm}$1 dBm respectively.

A Design of Push-push Voltage Controlled Oscillator using Frequency Tuning Circuit with Single Transmission Line (단일 전송선로의 주파수 동조회로를 이용한 push-push 전압제어 발진기의 설계 및 제작)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In this paper, a push-push VCDRO (Voltage Controlled Dielectric Resonator Oscillator) with a modified frequency tuning structure is investigated. The push-push VCDRO designed at 16GHz is manufactured using a LTCC (Low Temperature Co-fired Ceramic) technology to reduce the circuit size. The frequency tuning structure is embedded in intermediate layer of A6 substrate by an advantage of LTCC process. Experimental results show that the fundamental frequency suppression is above 30dBc, the frequency tuning range is 0.43MHz over control voltage of 0 to 12V, and phase noise of push-push VCDRO presents a good performance of -103dBc/Hz at 100KHz offset frequency from carrier.

A 2.4GHz Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통한 백게이트 튜닝 2.4 GHz VCO 설계)

  • Oh, Beom-Seok;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.

  • PDF

Low-Power Wide-Tuning Range Differential LC-tuned VCO Design in Standard CMOS

  • Kim, Jong-Min;Woong Jung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • This paper presents a fully integrated, wide tuning range differential CMOS voltage-controlled oscillator, tuned by pMOS-varactors. VCO utilizing a novel tuning scheme is reported. Both coarse digital tuning and fine analog tuning are achieved using pMOS-varactors. The VCO were implemented in a 0.18-fm standard CMOS process. The VCO tuned from 1.8㎓ to 2.55㎓ through 2-bit digital and analog input. At 1.8V power supply voltage and a total power dissipation of 8mW, the VCO features a phase noise of -126㏈c/㎐ at 3㎒ frequency offset.

  • PDF

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Improvement of Phase Noise Characteristics for Tuning Voltage in Voltage Controlled Oscillator using Coupled Microstrip Lines (결합 마이크로스트립 라인을 이용한 전압제어 발진기의 동조전압에 따른 위상잡음 특성 개선)

  • Ryu, Keun-Kwan;Shin, Dong-Hwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.513-518
    • /
    • 2010
  • Improvement of phase noise characteristics in a different approach of HEMT VCO (Voltage Controlled Oscillator) with coupled microstrip lines to tune the oscillating frequency is investigated. Two HEMT VCOs of 9.8GHz are manufactured in the same configuration except for the frequency tuning circuit in order to empirically demonstrate the phase noise reduction. Experimental result shows that phase noise reduction can be enhanced 8dBc/Hz at 100KHz offset frequency from carrier by frequency tuning circuit with coupled microstrip lines over the conventional VCO.

Push-Push Voltage Controlled Dielectric Resonator Oscillator Using a Broadside Coupler

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2015
  • A push-push voltage controlled dielectric resonator oscillator (VCDRO) with a modified frequency tuning structure using broadside couplers is investigated. The push-push VCDRO designed at 16 GHz is manufactured using a low temperature co-fired ceramic (LTCC) technology to reduce the circuit size. The frequency tuning structure using a broadside coupler is embedded in a layer of the A6 substrate by using the LTCC process. Experimental results show that the fundamental and third harmonics are suppressed above 15 dBc and 30 dBc, respectively, and the phase noise of push-push VCDRO is -97.5 dBc/Hz at an offset frequency of 100 kHz from the carrier. The proposed frequency tuning structure has a tuning range of 4.46 MHz over a control voltage of 1-11 V. This push-push VCDRO has a miniature size of 15 mm×15 mm. The proposed design and fabrication techniques for a push-push oscillator seem to be applicable in many space and commercial VCDRO products.

A 2.4 ㎓ Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통해 백게이트 튜닝을 이용한 2.4 ㎓ 전압 제어 발진기의 설계)

  • Oh, Beom-Seok;Hwang, Young-Seung;Chae, Yong-Doo;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.32-36
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a 0.25-$\mu\textrm{m}$ standard CMOS process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier. Total power dissipation is 7.5 mW.

  • PDF