• Title/Summary/Keyword: free algebras

Search Result 42, Processing Time 0.021 seconds

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

NOTE OF JORDAN DERIVATIONS ON BANACH ALGEBRAS

  • Chang, Ick-Soon;Kim, Hark-Mahn
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.381-387
    • /
    • 2002
  • Our main goal is to show that if there Jordan derivation D, G on a noncommutative (n+1)!-torsion free prime ring R such that D($\chi$)$\chi$$^n$+$\chi$$^n$G($\chi$) $\in$ C(R) for all $\chi$ $\in$ R, then we have D=0 and G=0.

PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

  • Wei, Feng;Xiao, Zhankui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.857-866
    • /
    • 2009
  • Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and $\mu$, $\nu$ be a pair of generalized derivations on R. If < $\mu^2(x)+\nu(x),\;x^n$ > = 0 for all x $\in$ R, then $\mu$ and $\nu$ are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center $C_R$ and d, g be a pair of derivations on R. If < $d^2(x)+g(x)$, $x^n$ > $\in$ $C_R$ for all x $\in$ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.

ON DERIVATIONS IN BANACH ALGEBRAS

  • Chang, Ick-Song;Jun, Kil-Woung;Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.635-643
    • /
    • 2002
  • Our main goal is to show that if there exist Jordan derivations D and G on a noncommutative (n + 1)!-torsion free prime ring R such that $$D(x)x^n-x^nG(x)\in\ C(R)$$ for all $x\in\ R$, then we have D=0 and G=0. We also prove that if there exists a derivation D on a noncommutative 2-torsion free prime ring R such that the mapping $\chi$longrightarrow[aD($\chi$), $\chi$] is commuting on R, then we have either a = 0 or D = 0.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

PERFECT IDEALS OF GRADE THREE DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • Cho, Yong-Sung;Kang, Oh-Jin;Ko, Hyoung-June
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.715-736
    • /
    • 2012
  • Brown provided a structure theorem for a class of perfect ideals of grade 3 with type ${\lambda}$ > 0. We introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4 in a Noetherian local ring. We construct a class of perfect ideals I of grade 3 with type 2 defined by a certain skew-symmetrizable matrix. We present the Hilbert function of the standard $k$-algebras R/I, where R is the polynomial ring $R=k[v_0,v_1,{\ldots},v_m]$ over a field $k$ with indeterminates $v_i$ and deg $v_i=1$.

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.957-972
    • /
    • 2020
  • Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-125
    • /
    • 2018
  • Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

CLASSIFICATION OF CLIFFORD ALGEBRAS OF FREE QUADRATIC SPACES OVER FULL RINGS

  • Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 1985
  • Manddelberg [9] has shown that a Clifford algebra of a free quadratic space over an arbitrary semi-local ring R in Brawer-Wall group BW(R) is determined by its rank, determinant, and Hasse invariant. In this paper, we prove a corresponding result when R is a full ring.Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is non-degenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$(V,R) induced by B is an isomorphism), and with a quadratic mapping .phi.: V.rarw.R such that B(x,y)=1/2(.phi.(x+y)-.phi.(x)-.phi.(y)) and .phi.(rx) = $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U9R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$,.., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2 we reserve the notation [a $a_{11}$, $a_{22}$] for the space. A commutative ring R having 2 a unit is called full [10] if for every triple $a_{1}$, $a_{2}$, $a_{3}$ of elements in R with ( $a_{1}$, $a_{2}$, $a_{3}$)=R, there is an element w in R such that $a_{1}$+ $a_{2}$w+ $a_{3}$ $w^{2}$=unit.TEX>=unit.t.t.t.

  • PDF