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PERFECT IDEALS OF GRADE THREE DEFINED BY

SKEW-SYMMETRIZABLE MATRICES

Yong Sung Cho, Oh-Jin Kang, and Hyoung June Ko∗

Abstract. Brown provided a structure theorem for a class of perfect
ideals of grade 3 with type 2 and λ > 0. We introduced a skew-symmetriz-
able matrix to describe a structure theorem for complete intersections
of grade 4 in a Noetherian local ring. We construct a class of perfect
ideals I of grade 3 with type 2 defined by a certain skew-symmetrizable
matrix. We present the Hilbert function of the standard k-algebras R/I,
where R is the polynomial ring R = k[v0, v1, . . . , vm] over a field k with
indeterminates vi and deg vi = 1.

1. Introduction

Let R be a commutative Noetherian local ring with maximal ideal m, and
let I be a proper ideal of R with finite projective dimension. The type of a
perfect ideal I of grade g is defined to be the dimension of R/m-vector space
ExtgR(R/m, R/I). We denote it by type I. Equivalently, if

F : 0 // Fg
// Fg−1

// · · · // F1
// R

is the minimal free resolution of R/I, then type I = rankFg. A perfect ideal
I of grade g is a complete intersection if I is generated by a regular sequence
x1, x2, . . . , xg, an almost complete intersection if it is minimally generated by
g + 1 elements, and a Gorenstein ideal if I has type 1.

In 1977, Buchsbaum and Eisenbud [4] provided structure theorems for Gor-
enstein ideals of grade 3 and for almost complete intersections of grade 3. They
also showed that every perfect ideal of grade 3 has a differential, graded com-
mutative algebra structure. In 1987, Brown [2] provided a structure theorem
for a class of perfect ideals of grade 3 with type 2 and λ(I) > 0, where λ(I)
is the numerical invariant introduced by Kustin and Miller [12] to distinguish
classes of Gorenstein ideals I of grade 4 in terms of free resolutions of R/I. In
1989, Sanchez [14] provided a structure theorem for a class of type 3 perfect
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ideals of grade 3 and λ(I) ≥ 2. In 2005, Kang and Ko [9] provided a structure
theorem for complete intersections of grade 4. In 2009, Kang, Cho, and Ko
[8] provided a structure theorem for some classes of perfect ideals of grade 3
which are algebraically linked to an almost complete intersection of grade 3
by a regular sequence. This contains not only three classes of perfect ideals of
grade 3 which are known by Buchsbaum and Eisenbud, Brown, and Sanchez,
but also a class of perfect ideals of grade 3 with type 4 which are algebraically
linked to an almost complete intersection of grade 3 by a regular sequence.

In [5, 10] we introduced some skew-symmetrizable matrices Gi(i = 1, 2) and
the ideals associated with Gi. We gave classes of ideals given by the quotient
of the submaximal order Pfaffians of the alternating matrix induced by Gi. G1

and G2 define classes of perfect ideals of grade 3 with type 2, λ(I) > 0 and
type 3, λ(I) ≥ 2, respectively. These perfect ideals are minimally generated by
n elements which are algebraically linked to almost complete intersections of
grade 3 with even type by a regular sequence, where n is odd and n > 3.

This shows that the skew-symmetrizable matrices and the ideals associated
with them play a key role in distinguishing some classes of perfect ideals of
grade 3 with type 2 ≤ r ≤ 4 minimally generated by n elements, where n is
odd and n > 3. In this paper, we define a certain skew-symmetrizable matrix
G3 determined by an r × 4 matrix A, an r × r alternating matrix Y and a
4× 4 alternating matrix U [see (3.3)], and the ideal Pfr+3(G3) associated with
G3. The main purpose of this paper is to construct a class of perfect ideals of
grade 3 with type 2, which are minimally generated by the quotients of the
submaximal order Pfaffians of the alternating matrix induced by G3. These
ideals contain some perfect ideals of grade 3 with type 2 and λ(I) = 0. Now we
describe the contents of this paper.

In Section 2, we review linkage theory and some structure theorems for
perfect ideals of grade 3.

In Section 3, we provide useful properties of the skew-symmetrizable matrix
Gi (i = 1, 2) and define the ideal I = Pf∗(Gi) associated with Gi. We intro-
duce an other skew-symmetrizable matrix G3 determined by A, Y and U . We
construct a class of perfect ideals I of grade 3 with type 2 defined by G3, and
the minimal free resolution F of R/I.

In Section 4, we compute the Hilbert function of homogeneous perfect ideals
I of grade 3 with type 2, which are minimally generated by the quotients of
the submaximal order Pfaffians of the alternating matrix induced by a skew-
symmetrizable matrix G3.

2. Preliminaries

In this section, we review linkage theory and the structure theorems for
three classes of perfect ideals of grade 3, which are given by Buchsbaum and
Eisenbud, Brown, and Sanchez. To review these structure theorems, first we
need some properties of an alternating matrix. Let T = (tij) be an n × n
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alternating matrix with entries in a commutative ring R. It is well known that
if n is odd, the determinant of an alternating matrix T is zero, and if n is even,
it is a square of a homogeneous polynomial of degree n

2 in the entries of T,

which is called the pfaffian of T. We will write detT = Pf(T )2. Denote by
Pfs(T ) the ideal generated by the sth order Pfaffians of T. Let s < n and
(i) = i1, i2, . . . , is denote an index of integers. Let θ(i) denote the sign of the
permutation that rearranges (i) in increasing order. If (i) has a repeated index,
then we set θ(i) = 0. Let τ(i) be the sum of the entries of (i) and T (i1, i2, . . . , is)
an alternating submatrix of T formed by deleting rows and columns i1, i2, . . . , is
from T. Define

T(i) = (−1)τ(i)+1θ(i)Pf (T (i1, i2, . . . , is)).

If s = n, we let T(i) = (−1)τ(i)+1θ(i) and if s > n, we let T(i) = 0. Let

t =
[
T1 T2 · · · Tn

]
be the row vector of the maximal order Pfaffians of T,

signed appropriately according to the conventions described above. Pfaffians
can be developed along a row in the same manner as the determinants. There
is a “Laplace expansion” for developing Pfaffians in terms of those of lower
order.

Lemma 2.1 ([Lemma 1.1, 12]). Let T be an n× n alternating matrix and j a

fixed integer, 1 ≤ j ≤ n. Then

(1) Pf(T ) =

n∑

i=1

tijTij , and

(2) tT = 0.

Lemma 2.2 follows from Lemma 2.1.

Lemma 2.2 ([Lemma 1.1, 14]). Let T be an n × n alternating matrix. Let

a, b, c, d, and e be distinct integers between 1 and n. Then

(1)

n∑

i=1

tikTiab = −δkaTb + δkbTa,

(2)

n∑

i=1

tikTiabc = δkaTbc − δkbTac + δkcTab,

(3)
n∑

i=1

tikTiabcd = −δkaTbcd + δkbTacd − δkcTabd + δkdTabc, and

(4)

n∑

i=1

tikTiabcde = δkaTbcde − δkbTacde + δkcTabde − δkdTabce + δkeTabcd,

where δij is the Kronecker’s delta.

For further analysis, we have the following lemma from Lemmas 2.1 and 2.2.

Lemma 2.3 ([Corollary 2.1, 11]). Let n be a positive integer and T an n× n
alternating matrix. Assume that i, j, k, and l are elements of a set {1, 2, . . . , n}.
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Then

TiTjkl − TjTikl + TkTijl − TlTijk = 0.

Let F be a free R-module with rank F = n. We denote by F ∗ the dual
module of F.

The Buchsbaum and Eisenbud structure theorem identifies Gorenstein ideals
of grade 3 as the ideals Pfn−1(T ) = (T1, T2, . . . , Tn) of a certain n × n alter-
nating matrix T.

Theorem 2.4 ([Theorem 2.1, 4]). Let R be a Noetherian local ring with max-

imal ideal m.
(1) Let n > 3 be an odd integer. Let F be a free R-module with rankF = n.

Let f : F ∗ → F be an alternating map whose image is contained in mF .

Suppose that Pfn−1(f) has grade 3. Then Pfn−1(f) is a Gorenstein ideal

minimally generated by n elements.

(2) Every Gorenstein ideal of grade 3 arises as in this way.

We noticed that, as in [4] or [13], in most cases, linkage is used in the case of
perfect ideals in Gorenstein or Cohen-Macaulay local rings. However the results
we will use are true for perfect ideals in any commutative ring, as shown by
Golod [6].

Definition 2.5. Let I and J be perfect ideals of grade g. An ideal I is linked
to J, I ∼ J if there exists a regular sequence x = x1, x2, . . . , xg in I ∩ J such
that J = (x) : I and I = (x) : J, and I is geometrically linked to J if I ∼ J
and I ∩ J = (x).

A fundamental result is that linkage is a symmetric relation on the set of
perfect ideals in a Noetherian ring R.

Theorem 2.6 ([Proposition 1.3, 13]). Let R be a Noetherian ring. If I is a

perfect ideal of grade g and x = x1, x2, . . . , xg is a regular sequence in I, then
J = (x) : I is a perfect ideal of grade g and I = (x) : J.

An almost complete intersection of grade g is linked to a Gorenstein ideal
of grade g by a regular sequence x.

Proposition 2.7 ([Proposition 5.2, 4]). Let I and J be perfect ideals of the

same grade g in a Noetherian local ring R and suppose that I is linked to J by

a regular sequence x = x1, x2, . . . , xg. Then

(1) If I is Gorenstein, then J = (x, w) for some w ∈ R and

(2) If J is minimally generated by x and w, then I is Gorenstein.

Now we review the structure theorems for a class of perfect ideals I of grade
3 with type 2, λ(I) > 0 and for a class of perfect ideals I of grade 3 with type
3, λ(I) ≥ 2 given by Brown [2] and Sanchez [14]. Kustin and Miller introduced
the numerical invariant λ(I) defined in [12] to distinguish Gorenstein ideals I
of grade 4 in terms of a resolution of R/I. Brown provided a structure theorem
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for a class of perfect ideals I of grade 3 with type 2, λ(I) > 0. The minimal
free resolution F of R/I is described in [2].

Theorem 2.8 ([Theorem 4.4, 2]). Let R be a Noetherian local ring with max-

imal ideal m. Let n > 4 be an integer. Let I be a type 2 perfect ideal of grade

3 minimally generated by n elements. If λ(I) > 0, then there is an n × n
alternating matrix T = (tij) with t12 = 0 and tij in m such that

(1) if n is odd, then I = (T1, T2, z1T12j + z2Tj : 3 ≤ j ≤ n) for some z1, z2
in m,

(2) if n is even, then I = (Pf(T ), T12, z1T1j + z2T2j : 3 ≤ j ≤ n) for some

z1, z2 in m.

Sanchez provided a structure theorem for a class of perfect ideals I of grade
3 with type 3, λ(I) ≥ 2. The minimal free resolution F of R/I is described in
[14].

Theorem 2.9 ([Theorem 2.1, 14]). Let R be a Noetherian local ring with

maximal ideal m. Let I be a perfect ideal of grade 3 minimally generated by

n > 4 elements. If I has type 3 and λ(I) ≥ 2, then there exists an n × n
alternating matrix T = (tij) and a 2 × 3 matrix X = (xij) with tij , xij in m

such that

(1) if n > 3 is odd, then either

I = (T1, x11T2 + x12T3 + x13T123, x21T2 + x22T3 + x23T123,

∆3Tj +∆2T12j +∆1T13j : 4 ≤ j ≤ n)

or

I = (T123, x11T1 + x12T2 + x13T3, x21T1 + x22T2 + x23T3,

∆3T12j +∆2T13j +∆1T23j : 4 ≤ j ≤ n),

where ∆i is the determinant of the 2 × 2 submatrix of X obtained by deleting

the ith column;
(2) if n > 3 is even, then either

I = (Pf(T ), x11T12 + x12T13 + x13T23, x21T12 + x22T13 + x23T23,

∆3T1j +∆2T2j +∆1T123j : 4 ≤ j ≤ n)

or

I = (T12, x11Pf(T ) + x12T13 + x13T23, x21Pf(T ) + x22T13 + x23T23,

∆3T1j +∆2T2j +∆1T123j : 4 ≤ j ≤ n).

We introduced an almost complete matrix f of grade 3 determined by an
r × 3 matrix A and an r × r alternating matrix Y, the extracted matrix from
f, and an ideal K3(f) associated with f to give the structure theorem and
characterizations of almost complete intersections of grade 3 with type r [see
Theorems 3.2 and 4.8, and Definitions 3.3 and 3.5, 8]. First we show that
if K3(f) has grade 3, then the minimal free resolution F of R/K3(f) has the
following form.
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Theorem 2.10 ([Theorem 4.1, 8]). Let A, Y,C,E, F, S, Z, z, w be notations

defined in Section 3 of [8] over the Noetherian local ring R with maximal ideal

m. Let f be an almost complete matrix of grade 3 determined by A and Y. Let

f̃ be a 4× (r + 3) matrix extracted from f.
(1) If r is even and if K3(f) has grade 3, then a minimal free resolution of

R/K3(f) has the form:

F : 0 // Rr
f3

// Rr+3 f2
// R4 f1

// R ,

where

f1 =
[
C w

]
, f2 = f̃ =




Z S

C E


 , f3 =

[
F
Y

]
.

(2) If r is odd and if K3(f) has grade 3, then a minimal free resolution of

R/K3(f) has the form:

F : 0 // Rr
f3

// R3+r
f2

// R4 f1
// R ,

where

f1 =
[
z w

]
, f2 = f̃ =




Z S

C E


 , f3 =

[
A Y

]t
.

We also described the structure theorem for some classes of perfect ideals
of grade 3 that are algebraically linked to an almost complete intersection of
grade 3 by a regular sequence x = x1, x2, x3.

Theorem 2.11 ([Theorem 5.5, 8]). Let R be a Noetherian local ring with

maximal ideal m.
(1) Let J be an almost complete intersection of grade 3 and let B a matrix

defined in (5.1) of [8]. Let x = x1, x2, x3 be a regular sequence in J defined in

(5.1) of [8]. Let r be the type of J.
(i) Let r be even. Let A,E, S, and Y be matrices defined in (3.2), (3.3) of

[8] and pk1 an element defined in (5.3) of [8] for k = 1, 2, . . . , r.
(ii) Let r be odd. Let A,S, Y , and Z be matrices defined in (3.3), (3.4) of [8]

and pk1 an element defined in (5.4) of [8] for k = 1, 2, . . . , r.
If I is an ideal generated by x1, x2, x3, p11, p21, . . . , pr1, then I is a perfect

ideal of grade 3 linked to J by a regular sequence x and has type µ(J/(x)).
(2) Every perfect ideal of grade 3 linked to an almost complete intersection

J of grade 3 by a regular sequence x = x1, x2, x3 arises as in the way of (1).

The structure theorems for some classes of perfect ideals of grade 3 deter-
mined by Buchsbaum and Eisenbud, Brown, and Sanchez can be regarded as
a special case of Theorem 2.11.
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3. Perfect ideals defined by skew-symmetrizable matrices

We introduced a skew-symmetrizable matrix in [9] to define a complete ma-
trix of grade 4 which plays a key role in describing a structure theorem for
complete intersections of grade 4. In this section, we study the ideal I associ-
ated with a skew-symmetrizable matrix G3 of grade 3 determined by an r × 4
matrix A and an r × r alternating matrix Y and a 4 × 4 alternating matrix
U with entries in the maximal ideal m of a Noetherian local ring R. We begin
this section with the definition of a skew-symmetrizable matrix.

Definition 3.1. Let R be a commutative ring with identity. An n × n ma-
trix X over R is said to be skew-symmetrizable or generalized alternating if
there exist nonzero diagonal matrices D′ = diag{u1, u2, . . . , un} and D =
diag{w1, w2, . . . , wn} with entries in R such that D′XD is an alternating ma-
trix.

Let X be an n × n skew-symmetrizable matrix. Then X̃ = D′XD is an
alternating matrix for some diagonal matrices D′ and D. We set A(X) to be
an alternating matrix given by

A(X) =

{
X if X is alternating,

X̃ if X is not alternating.

Example 3.2. Let R be a commutative Noetherian local ring with maximal
ideal m, and let n be an odd integer with n > 3. Let Y = (yij) be an n × n
alternating matrix with y12 = 0 and entries in m, and let A be the submatrix
of Y obtained by deleting the first two columns and the last (n − 2) rows of
Y . For two elements v and w in m, we define the n × n skew-symmetrizable
matrix G1 by

(3.1) G1 =




B vA

−At Y (1, 2)


 , where B =

[
0 w

−w 0

]

and Y (1, 2) is the (n−2)×(n−2) alternating submatrix Y obtained by removing
the first, second rows and columns from Y . The alternating matrix A(G1) is
obtained by multiplying the first two columns of G1 by v. Let xi be an element
defined by

xi = A(G1)i/v for i = 1, 2, 3, . . . , n.

We define Pfn−1(G1) as the ideal generated by n elements x1, x2, . . . , xn. The

next theorem states that Pfn−1(G1) characterizes a perfect ideal I of grade 3
satisfying the following properties: (1) I has type 2, (2) the number of gener-
ators for I is odd, and (3) λ(I) > 0.

Theorem 3.3 ([Theorem 4.3, 10]). Let R be a commutative Noetherian local

ring with maximal ideal m. Let n be an odd integer with n > 3 and v, w elements

in m. Let G1 be the n× n skew-symmetrizable matrix as defined in (3.1).
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(1) If I = Pfn−1(G1) is an ideal of grade 3 with λ(I) > 0, then I is a

perfect ideal of type 2.

(2) Every perfect ideal of grade 3 with type 2 and λ(I) > 0 minimally gen-

erated by n elements arises as in the way of (1).

Next we construct a skew-symmetrizable matrix which defines a class of
perfect ideals of grade 3 with type 3, λ(I) ≥ 2.

Definition 3.4. Let R be a commutative Noetherian local ring with maximal
ideal m, and let A = (aij) and Y = (yij) be an r × 3 matrix and an r × r
alternating matrix with entries in m, respectively. Set F to be the 3× r matrix
defined by

F =




a11 a21 · · · ar1
−a12 −a22 · · · −ar2
a13 a23 · · · ar3


 ,

where r is an even integer and r ≥ 4. Define an (r + 3) × (r + 3) skew-
symmetrizable matrix G2 by
(3.2)

G2 =




0 F

−F t Y


 , where F =




va11 va21 · · · var1
−ua12 −ua22 · · · −uar2
uva13 uva23 · · · uvar3





with u, v ∈ m \ {0}. The alternating matrix A(G2) is obtained by multiplying
the first column of G2 by v, the second column by u, and the third column by
uv. To describe some of the non-Gorenstein perfect ideals of grade 3, we need
the ideal Pfr+2(G2) induced from the submaximal order Pfaffians of A(G2) as
follows. Let

A(G2) =




0 F

−F
t

Y




be the alternating matrix induced by G2. We define Pfr+2(G2) to be the ideal
generated by the quotients of the submaximal order Pfaffians of A(G2) by uv,

Pfr+2(G2) = (A(G2)1/uv,A(G2)2/uv, . . . ,A(G2)r+3/uv).

Theorem 3.5 ([Theorem 3.6, 5]). Let R be a commutative Noetherian local

ring with maximal ideal m. Let x1 = A(G2)1/uv, x2 = A(G2)2/uv, and x3 =

A(G2)3/uv. If x = x1, x2, x3 is a regular sequence in Pfr+2(G2), then (1)

(x) : Pfr+2(G2) is a type r, grade 3 almost complete intersection, and (2)

Pfr+2(G2) is a type 3, grade 3 perfect ideal.

Now we introduce the other skew-symmetrizable matrix to define a class of
type 2 perfect ideals of grade 3.
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Definition 3.6. Let S be a regular element in a commutative ring R with
identity, and let r be an odd integer with r > 1. Let A = (aij), U = (uij)
and Y = (yij) be an r × 4 matrix, a 4 × 4 alternating matrix, and an r × r
alternating matrix, respectively. Now we define G3 to be an (r + 4)× (r + 4)
skew-symmetrizable matrix as follows:

(3.3) G3 =




U sAt

−A Y


 .

The following lemma gives us a property to define ideals associated with a
skew-symmetrizable matrix G3.

Lemma 3.7. Using the notation given above, let G3i be the (r + 3) × (r + 3)
submatrix of G obtained by deleting the ith column and row from G3.

(1) detG3i is divisible by s for i = 1, 2, 3, 4.
(2) s3 detG3i = A(G3)

2
i for i = 1, 2, 3, 4.

(3) s4 detG3i = A(G3)
2
i for i = 5, 6, . . . , r + 4.

Proof. This follows from direct computations. �

We need the following lemma for further use.

Lemma 3.8. Using the notation given above, let T = (tij) = A(G3) be the

(r+4)× (r+4) alternating matrix induced by a skew-symmetrizable matrix G3.
(1) If i, j, k are integers with 1 ≤ i, j, k ≤ 4, then Tijk is divisible by s;
(2) If i, j, k are integers with 1 ≤ i, j ≤ 4 and 5 ≤ k ≤ r + 4, then Tijk is

divisible by s;
(3) If i, j, k are integers with 5 ≤ i, j, k ≤ r + 4, then Tijk is divisible by s2;
(4) If i, j, k are integers with 1 ≤ i ≤ 4 and 5 ≤ j, k ≤ r + 4, then Tijk is

divisible by s2;
(5) Ti is divisible by s2 for every i.

Proof. The first four parts follow from direct computations and the last part
follows from Lemma 3.7. �

Notations 3.9. Using the notation given in Lemmas 3.7 and 3.8, we let T =
A(G3). Then from Lemma 3.7 we define T̄i as the element given by

Ti = s2T̄i.

If i, j, k are integers in parts (1) or (2) of Lemma 3.8, then we define T̄ijk as
the element given by

Tijk = sT̄ijk

and if i, j, k are integers in parts (3) or (4) of Lemma 3.8, then we define T̄ijk

as the element given by

Tijk = s2T̄ijk.
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In this way, if (i) is the multi-index i1, i2, . . . , in and T(i) is divisible by s or s2,

then we define T̄(i) as the element given by

T(i) = sT̄(i) or T(i) = s2T̄(i).

To avoid the confusion of multi indexes we will denote Ti−j k by Ti−j,k. The
following lemma is also a consequence of Lemmas 2.2, 3.7 and 3.8.

Lemma 3.10. Let G3 be an (r + 4)× (r + 4) skew-symmetrizable matrix and

T = A(G3) be the alternating matrix induced by G3. Let a, b, c, d, and e be

distinct integers between 1 and r + 4.
(1) Let k be an integer with 1 ≤ k ≤ 4.

(a) If 1 ≤ a, b ≤ 4, then we have

4∑

i=1

uikT̄iab +

r+4∑

i=5

−ai−4,kT̄iab = −δkaT̄b + δkbT̄a.

(b) If 1 ≤ a ≤ 4 and 5 ≤ b ≤ r + 4 or 5 ≤ a ≤ r + 4 and 1 ≤ b ≤ 4, then we

have
4∑

i=1

uikT̄iab +
r+4∑

i=5

−sai−4,kT̄iab = −δkaT̄b + δkbT̄a.

(2) Let k be an integer with 5 ≤ k ≤ r + 4.
(a) If 1 ≤ a ≤ 4 and 5 ≤ b ≤ r + 4 or 5 ≤ a ≤ r + 4 and 1 ≤ b ≤ 4, then we

have
4∑

i=1

ak−4,iT̄iab +

r+4∑

i=5

yi−4,k−4T̄iab = −δkaT̄b + δkbT̄a.

(b) If 5 ≤ a, b ≤ r + 4, then we have

4∑

i=1

sak−4,iT̄iab +

r+4∑

i=5

yi−4,k−4T̄iab = −δkaT̄b + δkbT̄a.

The following corollary is a consequence of Lemma 3.10.

Corollary 3.11. Using the notation given in Lemma 3.10, we have the follow-

ing:
(1) Let k be an integer with 1 ≤ k ≤ 4.

(a) If 1 ≤ a, b ≤ 4, then we have

4∑

i=1

uikT̄iab +

r+4∑

i=5

−ai−4,kT̄iab = 0 for k 6= a, b.

(b) If 1 ≤ a ≤ 4 and 5 ≤ b ≤ r + 4 or 5 ≤ a ≤ r + 4 and 1 ≤ b ≤ 4, then we

have
4∑

i=1

uikT̄iab +

r+4∑

i=5

−sai−4,kT̄iab = 0 for k 6= a, b.
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(2) Let k be an integer with 5 ≤ k ≤ r + 4.
(a) If 1 ≤ a ≤ 4 and 5 ≤ b ≤ r + 4 or 5 ≤ a ≤ r + 4 and 1 ≤ b ≤ 4, then we

have
4∑

i=1

ak−4,iT̄iab +

r+4∑

i=5

yi−4,k−4T̄iab = 0 for k 6= a, b.

(b) If 5 ≤ a, b ≤ r + 4, then we have

4∑

i=1

sak−4,iT̄iab +

r+4∑

i=5

yi−4,k−4T̄iab = 0 for k 6= a, b.

Proof. The proof follows from the fact that δka = 0 and δkb = 0 for k 6= p, q. �

Lemmas 3.7 and 3.8 enable us to define ideals associated with a skew-
symmetrizable matrix G3. These ideals contain a class of perfect ideals of grade
3 with type 2, λ = 0.

Definition 3.12. Using the notation given above, the alternating matrix T =
A(G3) is obtained by multiplying the first four columns of G3 by s. Let xi be
the element defined by

(3.4) xi = T̄i for i = 1, 2, 3, . . . , r + 4.

We define Pf r+3(G3) as the ideal generated by r + 4 elements xi.

Remark 3.13. Let G1 and G2 be the n×n skew-symmetrizable matrices defined
in (3.1) and (3.2), respectively. As we have shown that for i = 1, 2, the ideals

Pfn−1(Gi) are linked to an almost complete intersection of grade 3 by a regular

sequence x = x1, x2, x3. However we will see that the ideal Pfr+3(G3) is not
always linked to it by a regular sequence x.

First we construct the minimal free resolution F of R/Pfr+3(G3) such that
the quotients of the maximal order Pfaffians of the submatrix G3 of the second
differential map in F generates a class of perfect ideals of grade 3 with type
2, λ = 0. Let Dnmuv be the determinant of the 4 × 4 matrix formed by the
four rows n,m, u, v and columns 1, 2, 3, 4 of A. Define W = (wi) to be an r× 1
matrix given by

wi =
∑

1≤p<q≤4

∑

1≤u<v≤r

∣∣∣∣
aup auq
avp avq

∣∣∣∣YiuvUpq + s
∑

1≤a<b<c<d≤r

YiabcdDabcd.

Now we construct the minimal free resolution F of R/I such that I is minimally
generated by the quotients of the maximal order Pfaffians of the alternating
matrix induced by the skew-symmetrizable submatrix G3 of the second differ-
ential map in F. Let Z be 4× 1 matrix given by

Z =
[
z1 −z2 z3 −z4

]t
, where zi = (−1)i

r∑

l=1

Ylali.
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That is, Z is the scalar multiplication of a matrix product of At and the column

vector
[
Y1 Y2 · · · Yr

]t
by −1. Let F be the sequence of free R-modules and

theirs maps defined by

(3.5) F : 0 // R2 f3
// Rr+5 f2

// Rr+4 f1
// R,

where

f1 =
[
x1 x2 x3 x4 x5 x6 x7 · · · xr+4

]
,

f2 =




U sAt Z

−A Y 0


 ,

f3 =




0 0 0 0 Y1 Y2 Y3 · · · Yr s

x1 x2 x3 x4 w1 w2 w3 · · · wr −Pf(U)




t

.

First we show that F is a complex.

Lemma 3.14. Using the notation given above, let G3i be the (r + 3)× (r + 3)
submatrix of G3 obtained by deleting the ith column and row from G3. Then
we have f1f2 = 0 and f2f3 = 0.

Proof. First we show that f1f2 = 0. It follows from part (2) of Lemma 2.1 that

f1G3 = 0. Let D
(i)
ghl is the determinant of the 3 × 3 matrix of A formed by

rows g, h, l and columns α, β, γ of A in this order and {i, α, β, γ} = {1, 2, 3, 4}.
Simple computation shows that for k = 1, 2, 3, 4, we have

4∑

k=1

(−1)k+1xkzk =

4∑

k=1

∑

1≤g<h<l≤r

sD
(k)
ghlYghlzk +

4∑

k=1

4∑

j=1

(−1)k+j+1zkzjUkj

=

4∑

k=1

∑

1≤g<h<l≤r

−sD
(k)
ghlYghl(−1)k+1

r∑

q=1

Yqaqk

=

r∑

q=1

∑

1≤g<h<l≤r

−sYghl

(
4∑

k=1

(−1)k+1YqaqkD
(k)
ghl

)

=

r∑

q=1

∑

1≤g<h<l≤r

−sYghlYqDqghl

=
∑

1≤a<b<c<d≤r

−s(YaYbcd−YbYacd+YcYabd−YdYabc)Dabcd=0.

The last identity follows from Lemma 2.3 and this says that f1f2 = 0. Now
we prove that f2f3 = 0. It is sufficient to show that

(a) sAtyt + sZ = 0, where y =
[
Y1 Y2 · · · Yr

]
,

(b) Uxt + sAtW − Pf(U)Z = 0, where x =
[
x1 x2 x3 x4

]
,
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(c) −Axt + YW = 0.
It is easy to show part (a). We prove part (b). The following computation
gives us the proof:

r∑

k=1

sakiwk =

r∑

k=1

∑

1≤p<q≤4

∑

1≤u<v≤r

saki

∣∣∣∣
aup auq
avp avq

∣∣∣∣YkuvUpq

+

r∑

k=1

∑

1≤a<b<c<d≤r

s2akiYkabcdDabcd

=
∑

1≤p<q≤4

∑

1≤m<n<t≤r

sDipq
mntYmntUpq

+
∑

1≤e<f<g<h<l≤r

s2DefghlYefghl,

where Dipq
mnt is the determinant of the 3× 3 matrix of A formed by rows m,n, t

and columns i, p, q of A in this order and Defghl is the determinant of the 5×5
matrix formed by the five rows e, f, g, h, l and columns 1, 2, 3, 4, i of A. Since A
is an r × 4 matrix,

r∑

k=1

sakiwk =
∑

1≤p<q≤4

∑

1≤m<n<t≤r

sDipq
mntYmntUpq

=
4∑

h=1

∑

1≤u<v≤4

∑

1≤m<n<t≤r

sDiuv
mntYmntuhiUhiuv,

where u < v in {h, i, u, v} = {1, 2, 3, 4}. Hence for each i, we have

4∑

k=1

uikxk +

r∑

k=1

sakiwk + (−1)i+1(−Pf(U))zi

=
4∑

k=1

∑

1≤g<h<l≤r

(−1)k+1sD
(k)
ghlYghluik

−

4∑

k=1

4∑

j=1

(−1)j+1zjuikUkj +

r∑

k=1

sakiwk + (−1)i+1(−Pf(U))zi

=

4∑

k=1

∑

1≤g<h<l≤r

(−1)k+1sD
(k)
ghlYghluik +

r∑

k=1

sakiwk

=

4∑

k=1

∑

1≤g<h<l≤r

(−1)k+1sD
(k)
ghlYghluik

+
4∑

h=1

∑

1≤u<v≤4

∑

1≤m<n<t≤r

sDiuv
mntYmntuhiUhiuv = 0.
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The second identity follows from part (1) of Lemma 2.1. Finally we show part
(c).
For each i,

4∑

k=1

−aikxk +
r∑

k=1

yikwk

=

4∑

k=1

∑

1≤g<h<l≤r

(−1)ksaikD
(k)
ghlYghl −

4∑

k=1

4∑

j=1

r∑

l=1

aikaljYlUkj

+

r∑

k=1

∑

1≤p<q≤4

∑

1≤u<v≤r

yik

∣∣∣∣
aup auq
avp avq

∣∣∣∣YkuvUpq

+

r∑

k=1

∑

1≤a<b<c<d≤r

syikYkabcdDabcd

= −

4∑

k=1

4∑

j=1

r∑

l=1

aikaljYlUkj +

r∑

k=1

∑

1≤p<q≤4

∑

1≤u<v≤r

yik

∣∣∣∣
aup auq
avp avq

∣∣∣∣YkuvUpq = 0.

The second identity follows from part (3) of Lemma 2.2. The last identity
follows from part (1) of Lemma 2.2 and the following identities:

4∑

k=1

4∑

j=1

r∑

l=1

aikaljYlUkj =
r∑

l=1

∑

1≤p<q≤4

∣∣∣∣
aip aiq
alp alq

∣∣∣∣YlUpq and

r∑

k=1

∑

1≤p<q≤4

∑

1≤u<v≤r

yik

∣∣∣∣
aup auq
avp avq

∣∣∣∣YkuvUpq =

r∑

h=1

∑

1≤p<q≤4

∣∣∣∣
aip aiq
ahp ahq

∣∣∣∣YhUpq.

�

The following proposition gives us a criterion which tests wether or not a
perfect ideal I of grade 3 with 2 has a property that λ(I) = 0.

Proposition 3.15 ([Proposition 2.5, 2]). Let R be a Noetherian local ring with

maximal ideal m. Let I be a grade 3, type 2 perfect ideal. If I is minimally

generated by at least 5 elements, then the following are equivalent:
(1) λ(I) > 0.
(2) There is a minimal set of generators x1, . . . , xn for I such that x =

x1, x2, x3 is a regular sequence and (x) : I is an almost complete intersection.

Example 3.16. Let R = C[[x, y, z]] be a formal power series ring over the field
C of complex numbers with indeterminates x, y, z. If I = (x2, y2, yz2, xz2, z3)
is an ideal, then I has grade 3 and x2, y2 and z3 are a regular sequence in I.
Also we can easily show that type I = 2 by finding the minimal free resolution
F of R/I. The minimal free resolution F of R/I is

F : 0 // R2 d3
// R6 d2

// R5 d1
// R,
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where

d1 =
[
x2 y2 yz2 xz2 z3

]
,

d2 =




0 0 0 0 z2 y2

0 0 z2 0 0 −x2

z 0 −y x 0 0
0 z 0 −y −x 0
−y −x 0 0 0 0



, d3 =




x 0
−y 0
0 −x2

−z −xy
0 y2

0 −z2



.

And L = K : I = (z, xy, y2, x2), where K = (x2, y2, z3). Since x2, y2 and z are
a regular sequence in L, it is an almost complete intersection of grade 3. By
Proposition 3.15, λ(I) > 0.

The following theorem says that if Pfr+3(G3) has grade 3, then it has type
2.

Theorem 3.17. Let R be a Noetherian local ring with maximal ideal m. Let
r be an odd integer with r > 1 and let s be a regular element in R. With the

notations above, we assume that the entries of A,U, and Y are contained in m.
Let G3 be the (r + 4)× (r + 4) skew-symmetrizable matrix defined in (3. 3). If

I = Pfr+3(G3) has grade 3, then it is a perfect ideal of type 2.

Proof. Let F be the complex of free R-modules and R-maps defined in (3. 5).
We prove that F is the minimal free resolution of R/I. We use the Buchsbaum-
Eisenbud acyclicity criterion [3] to show that F is exact. It is easy to show that
f2 and f3 have ranks r + 3 and 2, respectively. Hence the first condition of
the criterion is satisfied. Now we prove that the second condition of it is also
satisfied. Let G3i be the (r+3)× (r+3) submatrix of G3 obtained by deleting
the ith column and row from G3. It follows from parts (1) and (2) of Lemma
3.7 that det(G3i) = sx2

i for i = 1, 2, 3, 4. More precisely,

x3
i =


−

4∑

j=1

(−1)j+1zjUij + s
∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl




3

=


−

4∑

j=1

(−1)j+1zjUij + s
∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl


x2

i

=

4∑

j=1

r∑

l=1

YlaljUij × x2
i +

∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl × sx2

i

=
4∑

j=1

r∑

l=1

aljUijYl × x2
i +

∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl × det(G3i).
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Let Gi,l+4
i be the (r+3)× (r+3) submatrix of f2 obtained by deleting the row

i and two columns i, l+ 4 from f2. Since

s×




4∑

j=1

r∑

l=1

aljUijYlx
2
i





=

4∑

j=1

r∑

l=1

aljUijYl det(G3i)

=

4∑

j=1

a1jUijY1 det(G3i) +

4∑

j=1

a2jUijY2 det(G3i) + · · ·+

4∑

j=1

arjUijYr det(G3i)

and

Yl det(G3i) = (−1)ls det(Gi,l+4
i ),

we have

4∑

j=1

r∑

l=1

aljUijYlx
2
i ∈ (det(Gi,5

i ), det(Gi,6
i ), det(Gi,7

i ), . . . , det(Gi,r+4
i ))

for i = 1, 2, 3, 4.
Thus

4∑

j=1

r∑

l=1

aljUijYlx
2
i ∈ Ir+3(f2).

Hence x3
i ∈ Ir+3(f2) for i = 1, 2, 3, 4. Part (3) of Lemma 3.7 says that for

i = 5, 6, . . . , r + 4,

detG3i = A(G3)
2
i /s

4 = x2
i implies x2

i is in Ir+3(f2).

The fact that x2
i is contained in I2(f3) can be proved as follows: For i = 1, 2, 3, 4,

x2
i =



−

4∑

j=1

(−1)j+1(−1)j
r∑

l=1

YlaljUij + s
∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl



 xi

=

4∑

j=1

r∑

l=1

YlxialjUij + sxi

∑

1≤g<h<l≤r

(−1)i+1D
(i)
ghlYghl ∈ I2(f3).

And for i = 5, 6, . . . , r + 4,

xi = −(Yi−4(−Pf(U))− swi−4) implies that xi is in I2(f3).

Thus if I has grade 3, then it has type 2. �

Example 3.18. Let R = Q[x, y, z] be the polynomial ring over the field Q of
rationals with indeterminates x, y, z and deg x = deg y = deg z = 1. Let A, Y,



PERFECT IDEALS OF GRADE THREE 731

and U be a 3× 4 matrix, a 3× 3 alternating matrix, and 4× 4 matrix given by

A =




0 y x x
y 0 0 0
z y 0 z



 , Y =




0 z2 y2

−z2 0 x2

−y2 −x2 0



 , and U =




0 x z 0
−x 0 z x
−z −z 0 y
0 −x −y 0


 ,

respectively. Let s = y. Let G3 be the matrix defined in (3.3). Then the 7× 7
alternating matrix A(G3) has following form

A(G3) =

[
sU sAt

−sA Y

]

=




0 xy yz 0 0 y2 yz
−xy 0 yz xy y2 0 y2

−yz −yz 0 y2 xy 0 0
0 −xy −y2 0 xy 0 yz
0 −y2 −xy −xy 0 z2 y2

−y2 0 0 0 −z2 0 x2

−yz −y2 0 −yz −y2 −x2 0




and then I = Pf6(G3) is an ideal generated by the following seven elements

x1 = −x4 + x2y2 + x3z + y2z2 + z4,

x2 = y4 − x3z − xy2z − yz3 − z4,

x3 = x4 − 2xy3 + y3z + 2xz3,

x4 = −x4 + xy3 + x2yz + y3z + yz3 − z4,

x5 = x3y − y4 − x3z − y2z2,

x6 = −xy3 + 2x2yz + 2xy2z − y3z − xyz2 − y2z2,

x7 = −x2y2 + y4 + xy2z + xyz2 − xz3.

Now we will show that I is a perfect ideal of grade 3 with type 2 and λ = 0.
First we show that I has grade 3. Using CoCoA 4.7.4, we can easily check that
the radical of I is the maximal ideal m = (x, y, z). Since m is the prime ideal
of grade 3, it follows that I has grade 3. Easy computations by CoCoA 4.7.4
gives us that

z1 = y3 − z3, z2 = x2y + yz2, z3 = −x3, z4 = x3 + z3,

w1 = y3 + yz2, w2 = −2x2z − xyz + y2z + xz2 + yz2, w3 = x2y − y3 − xyz.

The minimal free resolution F of R/Pf6(G3) has the form:

F : 0 // R2 f3
// R8 f2

// R7 f1
// R ,

where

f1 =
[
x1 x2 x3 x4 x5 x6 x7

]
,
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f2 =

[
U sAt Z
−A Y 0

]

=




0 x z 0 0 y2 yz z1
−x 0 z x y2 0 y2 −z2
−z −z 0 y xy 0 0 z3
0 −x −y 0 xy 0 yz −z4
0 −y −x −x 0 z2 y2 0
−y 0 0 0 −z2 0 x2 0
−z −y 0 −z −y2 −x2 0 0




,

f3 =




0 qt

yt W
s −Pf(U)




=

[
0 0 0 0 Y1 Y2 Y3 x
x1 x2 x3 x4 w1 w2 w3 −y2

]t
,

q =
[
x1 x2 x3 x4

]
.

This shows that I has type 2. Finally we prove that λ(I) = 0. We can prove
this by Proposition 3.15 as follows. Easy computation by CoCoA 4.7.4 shows
that x = x1, x2, x3 is a regular sequence. Let J = (x) : I. Then by Theorem
2.6 J is a perfect ideal of grade 3. The minimal free resolution G of R/J is

(3.6) G : 0 // R4
// R8

// R5
// R.

Hence J is a perfect ideal of grade 3 minimally generated by five elements.
Since I is minimally generated by r + 4 elements, it follows from the Bass’s
result [1] that the type of J is r+1. Let x = xi, xj , xk be any regular sequence
in I and J = (x) : I. Then we can easily check by CoCoA 4.7.4 that by finding
the minimal free resolution of R/J, J is a perfect ideal of grade 3 minimally
generated by five elements. Actually the minimal free resolution of R/J has
the form defined in (3.6). Proposition 3.15 gives us that λ(I) = 0.

4. Hilbert functions of some classes of perfect ideals of grade 3

Let R = k[v0, v1, . . . , vm] be the polynomial ring over the field k with inde-
terminates vi and deg vi = 1. Let I be a homogeneous Gorenstein ideal of grade
3. For this purpose, we use the explicit description of minimal free resolution
for R/I in [2] to describe the Hilbert function of R/I. Consider the minimal
free resolution F in the form

(4.1) Fhom : 0 −→ R(−s)
f∗

1−→
n⊕

i=1

R(−pi)
f2
−→

n⊕

i=1

R(−qi)
f1
−→ R(0),

where fi is a homogeneous map of degree 0 for i = 1, 2, 3, and f1 = (yi),
f2 = (fij),

qi = deg yi, pj = deg fij + qi, s = pi + qi.
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Of course, we may also have fij = 0 when i = j. If we define ri = pi − qi and
use the fact that yi is a certain pfaffian of f2, we get

deg yi =
s− ri
2

, deg fij =
ri + rj

2
, and s =

n∑

i=1

ri.

Using the original method for computing the Hilbert function of R/I [7], we
get the following proposition.

Proposition 4.1 ([Proposition 3.3, 4]). Using the notation given above we

have

H(R/I, t) =

(
m+ t

m

)
−

n∑

i=1

(
m+ t− qi

m

)
+

n∑

i=1

(
m+ t− pi

m

)
−

(
m+ t− s

m

)
.

Let I be the homogeneous perfect ideal of grade 3 with type 2 defined in
section 3. Now we describe the Hilbert function of R/I. We can rewrite the
minimal free resolution of R/I in (3.5) in the following form

Fhom : 0 −→

2⊕

i=1

R(si)
f3
−→

r+5⊕

i=1

R(−pi)
f2
−→

r+4⊕

i=1

R(−qi)
f1
−→ R(0),

where fi are defined in Section 3. The degrees qi of the homogeneous generators
for the ideal and the shifted degrees pi are given by

qi = deg xi for i = 1, 2, . . . , r + 4,

p1 = deg u21 + q2 or p1 = deg u31 + q3 or p1 = deg u41 + q4 or

p1 = deg al1 + ql+4 for some l(1 ≤ l ≤ r),

p2 = deg u12 + q1 or p2 = deg u32 + q3 or p2 = deg u42 + q4 or

p2 = deg al2 + ql+4 for some l(1 ≤ l ≤ r),

p3 = deg u13 + q1 or p3 = deg u23 + q2 or p3 = deg u43 + q4 or

p3 = deg al3 + ql+4 for some l(1 ≤ l ≤ r),

p4 = deg u14 + q1 or p4 = deg u24 + q2 or p4 = deg u34 + q3 or

p4 = deg al4 + ql+4 for some l(1 ≤ l ≤ r),

pi = deg s+ deg ai−4,l + ql or pi = deg yc−4,i−4 + qc for i = 5, 6, . . . , r + 4,

for some l(1 ≤ l ≤ 4) and c is an integer with 5 ≤ c ≤ r + 4,

pt = deg zi + qi for some i(1 ≤ i ≤ 4) and t = r + 5,

s1 = deg Yk + pk+4 for some k(1 ≤ k ≤ r) or s1 = deg s+ pr+5,

s2 = deg xl + pl for some l(1 ≤ l ≤ 4) or s2 = degwk + pk+4

for some k(1 ≤ k ≤ r) or s2 = degPf(U) + pr+5.

In the same way mentioned above we can compute the Hilbert function of R/I
as follows.
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Proposition 4.2. With notations as above we have

H(R/I, t)=

(
m+ t

m

)
−

r+4∑

i=1

(
m+ t− qi

m

)
+

r+5∑

i=1

(
m+ t− pi

m

)
−

2∑

i=1

(
m+ t− si

m

)
.

Here is an example.

Example 4.3. Let R = C[x, y, z] be the polynomial ring over the field C of
complex numbers with indeterminates x, y, z and deg x = deg y = deg z = 1.
Let

A =



−y 0 −x 0
0 −z 0 0
−z 0 −y 0


 , Y =




0 y2 z2

−y2 0 x2

−z2 −x2 0


 , U =




0 x z y
−x 0 y x
−z −y 0 z
−y −x −z 0


 .

Let s = z. Then the 7× 7 skew-symmetrizable matrix G3 is of the form

G3 =




U sAt

−A Y




and the alternating matrix induced by G3 is

A(G3) =

[
sU sAt

−sA Y

]

=




0 xz z2 yz −yz 0 −z2

−xz 0 yz xz 0 −z2 0
−z2 −yz 0 z2 −xz 0 −yz
−yz −xz −z2 0 0 0 0
yz 0 xz 0 0 y2 z2

0 z2 0 0 −y2 0 x2

z2 0 yz 0 −z2 −x2 0




and thus I = Pf6(A(G3)) is the ideal generated by seven homogeneous elements

x1 = x4 + xy3 + z4,

x2 = −x3y − y4 + x2yz + y2z2,

x3 = −x3y − xy2z − yz3,

x4 = x4 + x2y2 + xy3 + y3z − y2z2 + xz3 + z4,

x5 = x2y2 − y2z2 + z4,

x6 = −xy2z + x2z2 − y2z2,

x7 = y4 + xyz2 − yz3.

Now we show that I is a homogeneous perfect ideal of grade 3 with type 2.
Easy computation by CoCoA 4.7.4 says that the radical of I is the maximal
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ideal m = (x, y, z). Since m has grade 3, I has grade 3. The minimal free
resolution F of R/I is given by (3.5).

F : 0 −→

2⊕

i=i

R(si)
f3
−→

8⊕

i=1

R(−pi)
f2
−→

7⊕

i=1

R(−qi)
f1
−→ R(0),

where

f1 =
[
x1 x2 x3 x4 x5 x6 x7

]
,

f2 =

[
U sAt Z
−A Y 0

]

=




0 x z y −yz 0 −z2 x2y + y2z
−x 0 y x 0 −z2 0 −z3

−z −y 0 z −xz 0 −yz x3 + y3

−y −x −z 0 0 0 0 0
y 0 x 0 0 y2 z2 0
0 z 0 0 −y2 0 x2 0
z 0 y 0 −z2 −x2 0 0




,

f3 =




0 qt

yt W
s −Pf(U)





=

[
0 0 0 0 Y1 Y2 Y3 z
x1 x2 x3 x4 w1 w2 w3 −y2

]t
,

q =




x1

x2

x3

x4




t

,

and

Y1 = x2, Y2 = −z2, Y3 = y2, w1 = z3−y2z, w2 = x2z−xy2, w3 = xyz−yz2.

Hence I is a homogeneous perfect ideal of grade 3 with type 2. Now we compute
the Hilbert function R/I by using Proposition 4.2. The values of the pi, qi and
si are given as follows

qi = 4 for i = 1, 2, . . . , 7,

pi = 5 for i = 1, 2, 3, 4,

pj = 6 for j = 5, 6, 7,

p8 = 7, s1 = 8, s2 = 9.

Hence the Hilbert function H(R/I, t) is as follows:

H(R/I, 0) = 1, H(R/I, 1) = 3, H(R/I, 2) = 6, H(R/I, 3) = 10,

H(R/I, 4) = 8, H(R/I, 5) = 4, H(R/I, 6) = 1, H(R/I, 7) = 0 for t ≥ 7.
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This agrees with the computation by CoCoA 4.7.4.

Acknowledgements. We would like to thank anonymous referees for giving
us valuable suggestions and constructive criticism.

References

[1] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
[2] A. Brown, A structure theorem for a class of grade three perfect ideals, J. Algebra 105

(1987), no. 2, 308–327.
[3] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact?, J. Algebra 25 (1973),

259–268.
[4] , Algebra structures for finite free resolutions and some structure theorems for

ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447–485.
[5] E. J. Choi, O.-J. Kang, and H. J. Ko, On the structure of the grade three perfect ideals

of type three, Commun. Korean Math. Soc. 23 (2008), no. 4, 487–497.
[6] E. S. Golod, A note on perfect ideals, From the collection “Algebra” (A. I. Kostrikin,

Ed), Moscow State Univ. Publishing House (1980), 37–39.
[7] D. Hilbert, Ueber die Theorie der Algebraischen Formen, Math. Ann. 36 (1890), no. 4,

473–534.
[8] O.-J. Kang, Y. S. Cho, and H. J. Ko, Structure theory for some classes of grade three

perfect ideals, J. Algebra 322 (2009), no. 8, 2680–2708.
[9] O.-J. Kang and H. J. Ko, The structure theorem for complete intersections of grade 4,

Algebra Colloq. 12 (2005), no. 2, 181–197.
[10] , Structure theorems for perfect ideals of grade g, Commun. Korean. Math. Soc.

21 (2006), no. 4, 613–630.
[11] A. Kustin and M. Miller, A general resolution for grade four Gorenstein ideals,

Manuscripta Math. 35 (1981), no. 1-2, 221–269.
[12] , Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math.

Soc. 270 (1982), no. 1, 287–307.
[13] C. Peskine and L. Szpiro, Liaison des variétés algébriques, Invent. Math. 26 (1974),
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