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THE PROPERTIES OF JORDAN DERIVATIONS OF
SEMIPRIME RINGS AND BANACH ALGEBRAS, I

Byung Do Kim

ABSTRACT. Let R be a 5!-torsion free semiprime ring, and let D : R — R
be a Jordan derivation on a semiprime ring R. Then [D(z),z]D(x)? =
if and only if D(x)?[D(z),z] = 0 for every € R. In particular, let A
be a Banach algebra with rad(A) and if D is a continuous linear Jordan
derivation on A, then we show that [D(x),z]D(x)? € rad(A) if and only
if D(x)?[D(z),z] € rad(A) for all x € A where rad(A) is the Jacobson
radical of A.

1. Introduction

Throughout, R represents an associative ring and A will be a complex Ba-
nach algebra. We write [z, y] for the commutator zy — yx for x,y in a ring. A
ring R is called n-torsion free if nz = 0 implies x = 0. Recall that R is prime
if aRb = (0) implies that either @ = 0 or b = 0, and is semiprime if aRa = (0)
implies @ = 0. rad(A) denotes the Jacobson radical of a Banach algebra A. We
say that A is semisimple if rad(A) = (0) (see Bonsall and Duncan [1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(z)y + xD(y) holds for all z,y € R. And an additive mapping D from R to
R is called a Jordan derivation if D(x?) = D(z)z + xD(z) holds for all z € R.

Johnson and Sinclair [5] have proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer [14] states
that every continuous linear derivation on a commutative Banach algebra maps
the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas [15] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.

Vukman [17] has proved the following: let R be a 2-torsion free prime ring.
If D: R — R is a derivation such that [D(x),z]D(x) = 0 for all € R, then
D =0.
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Moreover, using the above result, he has proved that the following holds: let
A be a noncommutative semisimple Banach algebra. Suppose that

[D(x), 2] D(x) = 0

holds for all € A. In this case, D = 0. See [2], [6], [7], [8], [10], [12], [13] and
[16] for further results.

In this paper, we generalize the statement of Theorem 3.1 in [11] except the
torsion free condition, and we shall give a generalization of Theorem 3.2 and
its application to the Banach algebra theory.

2. Preliminaries
The following lemma is due to Chung and Luh [4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist elements
Y1:Y2, - Yn—1,Yn in R such that Y _, thy, =0 for allt = 1,2,...,n. Then
we have yr = 0 for every positive integer k with 1 < k < n.

The following theorem is due to Bresar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R — R
be a Jordan derivation. In this case, D is a derivation.

The following theorems are due to Kim [11].

Theorem 2.3. Let R be a 3!-torsion free semiprime ring. Let D : R — R be
a Jordan derivation on R. In this case, it follows that
[D(z),z]D(x) =0 < D(x)[D(z),z] =0

for every x € R.

Theorem 2.4. Let A be a Banach algebra with rad(A). Let D : A — A be a
continuous linear Jordan derivation. Then we obtain

[D(z),z]D(x) € rad(A) < D(z)[D(x),x] € rad(A)
for every x € A.

3. Main results

We need the following notations. After this, by S,, we denote the set {k €
N |1 <k < m}, where m is a positive integer. When R is a ring, we shall denote
the maps B: RxR— R, f,g,h,F : R — R by B(x,y) = [D(z),y] + [D(y), z],
f(z) = [D(x),a], g(z) = [f(x),2], h(z) = [g(x),2], F(z) = [D*(x),a] for
all z,y € R respectively. And in particular, for a Jordan derivation D on
R, we shall denoted it by D*(x) = (D o D)(x) = D(D(x)), and D"(z) =
(Do D" Y (z) = D(D" *(z)) for all integers n > 2 and all z € R. Moreover,
we have the basic properties:

B(l‘,y) = B(y"r)7 B(Ivyz) = B(x,y)z —|—yB(l‘,Z> + D(y)[z,x] + [y,z]D(z),
B(z,yD(z)) = B(x,y)D(x) +yF(z) + D(y) f(x) + [y, z] D*(x),



THE PROPERTIES OF JORDAN DERIVATIONS 105

B(z, D(z)y) = D(z)B(z,y) + F(z)y + f(x)D(y) + D*(z)[y, =],
B(x,z) =2f(x), B(z,2*) = 2(f(z)x + zf(x)), =,y,2 € R.

Theorem 3.1. Let R be a 3!-torsion free semiprime ring. Suppose there exists
a Jordan derivation D : R — R such that

([D(x), z], 2] D(x) = 0
for all x € R. Then we have 3f(x)D(x)? — D(x)f(z)D(x) =0 for all x € R.
Proof. Let R be a commutative ring. Then f(z) = [D(z),x] =0 for all x € R.
Hence it is clear that 3f(z)D(z)? — D(z)f(z)D(z) = 0 holds for all x € R.
Thus it is sufficient to prove the above statement in the noncommutative case

of R. By Theorem 2.2, we can see that D is a derivation on R.
Assume that

(1) [D(2), ], 2]D(x) = [f(x),2]D(x) = g(x)D(x) = 0, € R.
Replacing x + ty for z in (1), we have
([D(z +ty), x

+ ty], x + ty| D(x + ty)

= [[D(z),z], 2] D(x) + {[B(x,y), 2] D(x)
+[f(@),y]D(x) + g(x)D(y)} + t*G1(z,y)

(2) + 3Gy (z,y) +t*g(y)D(y) =0, z,y € R, t € S,

where G; and G2 denote the term satisfying the identity (2).
From (1) and (2), we obtain

t{[B(z,y),z]D(z) + [f(2),y]D(z) + g(z)D(y)} + t*G1(z, y)
(3) +t*Go(x,y) =0, ,y € R, t € Ss.
Since R is 3!-torsion free, by Lemma 2.1 the relation (3) yields
(4) [B(x,y),x]D(x) + [f(2),y] D(z) + g(x)D(y) = 0, z,y € R.
Let y = 22 in (4). Then using (1), we get
0=2{[f (@) +zf(x),z]}D(x) + (9(x)z + zg(x))D(z)
+9(@)(D(z)r + zD(x))
= 29( JaD(z) + 2zg(x)D(z) + g(x)zD(x) + zg(x)D(x)
+9(x)D(z)x + g(x)xD(x)
= 4g(x)zD(x) + 3zg(z)D(z) + g(x)D(x)z
(5) = 4g(x)zD(x) = 4h(z)D(x) = —4g(x)f(z) = 0, = € R.
Since R is 3!-torsion free, it follows from (5) that
(6) hx)D(x) = g(x)f(x) =0, = € R.
Substituting yD(x) for y in (4), we arrive at
0= [B(z,yD(x)),z]D(z) + [f (x), yD(z)|D(z) 4 g(x) D(yD(x))
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(1) +9(2)D(y)D(x) + g(x)yD*(x), =,y € R.
Right multiplication of (4) by D(x) leads to
8)  [B(z,y),2]D(x)* + [f(z),y]D(z)* + g(x)D(y) D(x) = 0, z,y € R.
From (7) and (8),
B(z,y)f(z)D(z) + [D(y), 2] f(z)D(z) + D(y
+y[F(z),2]D(z) + [y, = :
9) + [y, z],2]D*(2) D(2) + y[f (x), D(z)]D(x) + g(x)yD*(z) = 0, 2,y € R.
Combining (1) with (9),
B(z,y) f(z)D(z) + [D(y), 2] f(z) D(x) + y[F (), z] D(x)
+ [y, 2]F(2)D(z) + ly, 2] F(z) D
(10) +ylf(2), D(@)|D(x) + g(x)yD?
Writing zy for y in (10), we arrive at
0= 2B(z,y) f(x)D(z) + 2f (x)yf(x)D(z) + D(2)[y, z] f (z) D (x)
+ [zD(y) + D(z)y, ] f (z)D(x) + zy[F(z), z] D(x)
+ zly, 2] F (2) D(x) + z[y, 2] F (x) D(x) + z[[y, «], z] D* () D(x)

~—

+aylf(2), D(@)]D(@) + g(x)ay D (x)
—ﬂﬂB(aC y)f(2)D(x) + 2f (x)yf () D(x) + D(x)ly, 2] f (x) D(x)
+2[D(y), z] f(z) D(z) + D(x)ly, ] f(2) D(x)
+ f(@)yf(2)D(x) + zy[F(2), 2] D(z)
+aly, o] F(2)D(x) + aly, 2] F(2) D(w) + =[[y, «], 2] D*(2) D(x)
(11) +aylf(2), D(@)]D(w) + g(x)ayD*(z), 2,y € R.

|D
Left multiplication of (10) by x leads to
zB(z,y) f(x)D(x) + z[D(y), z]f () D(x) + zy[F (z), z] D(x)
+aly, 2] F(x) D(x) + aly, 2] F (2) D(x) + [y, 2], 2] D* (x) D ()
(12)  +ay[f(z), D(@)]D(x) + zg(zx)yD*(x) = 0, =,y € R.
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From (1), (11) and (12),
(13)  3f(2)yf(2)D(x) + 2D (2)ly, ] f (2) D() + h(z)yD*(x) = 0, @,y € R.
Substituting D(x)y for y in (13), we arrive at
3f(2)D(x)yf(x)D(x) + D(x)*[y, «]f(x)D(x) + D() f (x)y f(z) D(x)
+D(2)*[y, 2] (2) D(x) + D(x) f (x)yf (2)D(x)

(14)  + h(x)D(x)yD*(x) =0, =,y € R.
From (6) and (14),

{3f(2)D(x) + 2D(x) f(2)}yf(2)D(x) + D(x)*[y, 2] f () D(x)
(15) + D(z)?[y, ] f(z)D(x) = 0, =,y € R.
Left multiplication of (13) by D(z) leads to

3D(2)f(x)yf(x)D(x) + D(x)*[y, 2] f (2) D(x

(16) + D(z)?[y, ] f(x)D(x) + D(z)h(z)yD*(x) = 0, =,y € R.
From (1), (15) and (16),
(17) {3f(2)D(z) - D(z)f(x)}yf(z)D(z) — D(x)h(z)yD*(x) =0, =,y € R.
Replacing D(z)y for y in (17), we arrive at

{3f(2)D(x)* = D(x) f(2)D(x)}yf (x)D(x) — D(x)h(z) D(z)yD* ()
(18) =0, =,y € R.
From (6) and (18),
(19) {3f(2)D(2)* = D(2)f(x)D(2)}yf(x)D(x) = 0, 2,y € R.
Writing yD(x) for y in (19), we obtain
(20)  {3f(2)D(2)* = D(w)f(x)D(x)}yD(x) f(x)D(z) = 0,2,y € R.
Right multiplication of (19) by 3D(x) leads to
(21)  {3f(x)D(x)* = D(x)f(x)D(x)}y(3f(2)D(2)*) = 0, =,y € R.
From (20) and (21),

{3f(2)D(2)* = D(x)f(2)D(x)}y(3f (x)D(z)* — D(x) f(z)D())

(22) =0, z,y€R.
Since R is semiprime, it follows from (22) that
(23) 3f(x)D(z)? — D(x)f(z)D(x) =0, z € R. 0

Using the same technique with necessary variations one can prove the fol-
lowing Theorem and statement Theorem 3.2 without the proof.
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Theorem 3.2. Let R be a 3!-torsion free semiprime ring. Suppose there exists
a Jordan derivation D : R — R such that

D(z)[[D(x), 2], 2] = 0
for all x € R. Then we have 3D(x)?f(x) — D(z)f(z)D(x) =0 for all x € R.

Lemma 3.3. Let R be a 5!-torsion free semiprime ring. Let D : R — R be a
Jordan derivation on R. And assume that

D(x)g(x)yD*(x)D(x) = D(w)[f(x), z]yD*(x)D(z) = 0
for all z,y € R. Then we have D(x)g(x) = D(x)[f(z),2] =0 for all x € R.

Proof. When R is commutative, we see that if f(x) = [D(z),z] = 0 for all
x € R, then D(z)g(z) = D(x)[f(z),z] =0 for all = € R.

Hence it is sufficient to prove the above statement in the noncommutative
case of R. By Theorem 2.2, we can see that D is a derivation on R.

Suppose

(24) D(z)g(x)yD*(x)D(x) = [f(z),2]D(x)yD*(x) D(z) = 0, « € R.
Writing  + tz for = in (24), we get
D(x +t2)[[D(x + tz),z + tz], x + t2lyD*(x + tz) D(x + tz)
= D(z)g(x)yD*(x) D(x) + t{(D(2)g(x) + D(x)([B(z, 2), 2]
+ [f(2), 2)))yD*(2) D(z) + D(x)g(x)y(D*(2)D(x) + D*(z)D(2))}
+ 121 (2, y, 2) + 3L (x,y, 2) + t113(z, y, 2) + t014(x, y, 2)
(25) +t5D(2)g(2)yD?*(2)D(2) =0, z,y,2 € R, t € S5,

where Iy, Is, I3 and I, denote the term satisfying the identity (25).
From (24) and (25), we obtain

t{(D(2)g(z) + D(x)([B(x, 2), 2] + [f(2), 2]))yD*(x)D(x)

T D(a)g()y(DA(2)D(w) + DA@)D(2))} + 11(w,y, 2) + £ a(2, 1, 2)
(26)  +t'Is(z,y,2) + t°14(x,y,2) =0, x,y,2 € R, t € S.
Since R is 5!-torsion free, by Lemma 2.1 the relation (26) yields

{D(2)g9(x) + D(x)([B(x, 2), 2] + [f(x), 2])}yD*(x) D(x)

(27) + D(x)g(x)y{D*(2)D(z) + D*(x)D(2)} = 0, z,y,2 € R.
Writing wD(z)g(z)y for y in (27), we get

(D(2)g(x) + D(2)([B(x, 2), 2] + [f(2), z]))wD(x)g(x)y D*(x) D()
(28)  + D(x)g(x)wD(x)g(x)y(D*(2)D(z) + D*(x)D(2)) = 0, z,y,z € R.
From (24) and (28),
(29)  D(x)g(x)wD(x)g(x)y(D*(2)D(x) + D*(2)D(2)) = 0, @,y,z € R.



THE PROPERTIES OF JORDAN DERIVATIONS 109

Replacing y(D?(2)D(x) + D*(z)D(z))w for w in (29), we get
D(x)g(x)y(D*(2)D(x) + D*(x) D(2))wD(x)g(x)y{ D*(2) D ()
(30) + D*(x)D(2)} =0, z,y,2z € R.
Since R is semiprime, we get from (30)
(31) D(x)g(x)y(D*(2)D(z) + D*(z)D(2)) = 0, 2,9,z € R.
Writing  + tw for z in (31), we get
D(x + tw)[f(x + tw), z + tw]y(D*(2)D(x + tw) + D?*(x + tw)D(2))
= D(z)g(x)y(D*(2) D(x) + D*(2) D(2)) + {D(w)g()
+ D(z)([B(w, w), 2] + [f (), w])y(D*(2) D(x) + D*(x) D(2))
+ D(x)g(2)y(D*(2)D(w) + D*(w)D(2))} + t* K1 (2,y, 2)
+ 3 Ko (2, y, 2) + t*K3(x,y, 2)
+1°D(w)g(w)y(D*(2) D(w) + D(w)D*(2))
(32) =0, z,y,z € R, t €855,

where K, K, K3 denote the term satisfying the identity (32).
From (31) and (32), we obtain

t{D(w)g(x) + D()([B(x,w), o] + [f (), w])y(D*(z) D(x) + D*(x) D(2))
+ D(z)g(2)y(D*(2) D(w)+ D*(w)D(2))} + * Ky (2, y, 2)+ t* Ka(z,y, 2)
(33) +t*Ks(x,y,2)=0, w,z,y,2 € R, t € S.
Since R is 5!-torsion free, by Lemma 2.1 the relation (33) yields
D(w)g() + D(&) (Bl w), 2] + [f(x), w]))y(D*(2)D(x) + DX(x)D(2))
(34) + D(x)g(z)y(D*(2)D(w) + D*(w)D(2)) = 0, w,2,y, 2 € R.
Writing vD(x)g(z)y for y in (34), we get
D(w)g(x) + D@)([Bla,w), 2] + [£(x), w]))og(x) Da)y{ D*(:)D(x)
+ D*(2)D(2)} + D(x)g(x)vg(x) D(2)y(D*(2) D(w) + D*(w)D(z))
(35) =0, w,z,y,z € R.
From (31) and (35),
(36) D(@)g(x)oD(x)g()y(D*()D(w) + DA(w)D(2)) = 0, v,w,2,y,2 € R
Replacing y(D?(z)D(w) + D?(w)D(z))v for w in (36), we get
D(@)g(x)y(D*(2)D(w) + D*(w)D(2))uD(@)g(w)y{ D*(2) D(w)
(37) + D*(w)D(2)} =0, v,w,x,y,2 € R.
Since R is semiprime, we get from (37)
(38) D(z)g(2)y(D*(2)D(w) + D*(w)D(z)) =0, w,z,y,z € R.
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Putting wD(z) instead of for w in (38), we have

D(x)g(x)y{D*(2) D(w)D(2) + D*(z)wD*(z) + D*(w)D(2)?)
(39) +2D(w)D?*(2)D(z) + wD?*(2)D(2)} = 0, w, 2,7y, 2 € R.
From (24), (38) and (39), we obtain
(40) D(x)g(2)y{D*(2)wD?(z) + wD?(2)D(2)) = 0, w, x,y,z € R.
Writing D(z)w for w in (40), we get
(41) D(x)g(x)y{D*(2)D(2)wD?*(z) + D(2)wD?(2)D(z)) = 0, w,z,y,z € R.
From (24) and (41), we obtain
(42) D(z)g(x)yD(2)wD?(2)D(z) = 0, w,z,y, 2 € R.
Replacing yD3(z) for y in (42), we get
(43) D(x)g(x)yD?*(2)D(2)wD?*(2)D(z) = 0, w,z,y,z € R.
Substituting wD(z)g(x)y instead of for w in (43), we have
(44) D(x)g(x)yD?*(2)D(2)wD(x)g(x)yD?*(2)D(z) = 0, w,z,y, 2 € R.

Since R is semiprime, it follows from (44) that

(45) D(x)g(x)yD3(2)D(z) =0, z,y,2 € R.
From (40) and (45), we obtain
(46) D(x)g(z)yD?*(2)wD?(z) = 0, w,z,y,2 € R.

Substituting wD(z)g(x)y for w in (46), we get

(47) D(x)g(z)yD?*(2)wD(z)g(x)yD*(z) = 0, w,z,y, 2 € R.
Since R is semiprime, it follows from (47) that

(48) D(x)g(z)yD?*(z) =0, 2,y,2 € R.
Replacing zw for z in (48), we get

(49) D(z)g(2)y(D*(2)w + 2D(2)D(w) + 2D*(w)) = 0, w,z,y, 2 € R.
From (48) and (49), we obtain

(50) 2D(x)g(z)yD(z)D(w) =0, w,z,y,z € R.

Since R is 3!-torsionfree, it follows from (50) that

(51) D(z)g(x)yD(z)D(w) =0, z,y,z € R.

Writing wz for w in (51), we get

(52) D(x)g(x)y{D(z)D(w)z + D(z)wD(z)) =0, w,x,y,z € R.
From (51) and (52), we obtain

(53) D(z)g(x)yD(z)wD(z) =0, w,z,y,z € R.
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Substituting wD(z)g(x)y for w in (53), we get

(54) D(z)g(z)yD(z)wD(z)g(x)yD(z) =0, w,z,y,z € R.

Since R is semiprime, it follows from (54) that

(55) D(x)g(z)yD(z) =0, z,y,z € R.

Right multiplication of (55) by g(z) leads to

(56) D(z)g(x)yD(z)g(z) =0, z,y,z € R.

Since R is semiprime, we obtain from (56)

(57) D(x)g(z) =0, z € R. O

Using the same technique with necessary variations one can prove the fol-
lowing lemmas and statements Lemmas 3.4 and 3.5 without the proofs.

Lemma 3.4. Let R be a 5!-torsion free semiprime ring. Let D : R — R be a
Jordan derivation on R. Assume that

9(x)D(x)yD*(x)D(x) = [f(x), 2] D(2)yD*(x) D(x) = 0
for all x,y € R. Then we have g(x)D(z) = [f(x),z]D(x) =0 for all x € R.

Lemma 3.5. Let R be a 3!-torsion free semiprime ring. Let D : R — R be a
Jordan derivation on R. Assume that

D(x)D*(2)yD(x)g(x) = D(x)D*(2)yD(x)[f(z), 2] = 0
for all z,y € R. Then we have D(z)g(x) = D(x)[f(z),z] =0 for all x € R.

Lemma 3.6. Let R be a 3!-torsion free semiprime ring. Let D : R — R be a
Jordan derivation on R. Assume that

D(x)D*(2)yg(x)D(x) = D(x) D*(2)y[f(z), 2] D(x) = 0
for all z,y € R. Then we have g(x)D(x) = [f(z),z]D(x) =0 for all x € R.

Proof. In the commutative case of R, we see that if f(z) = [D(z),z] = 0 for
all x € R. Hence it is clear that D(x)g(z) = D(z)[f(z),z] =0 for all x € R. It
is sufficient to prove the above statement in the noncommutative case of R.
By Theorem 2.2, we can see that D is a derivation on R.
In any semiprime ring, we see that ayb = 0 <= bya = 0 for all y € R.
Thus it follows that

D(x)D?*(x)yg(x)D(x) =0 <= g(x)D(x)yD(z)D*(z) =0, = € R.
Hence we may assume that
(58) 9(z)D(a)yD(z)D*(x) = [f(x), 2] D(2)yD(2)D*(x) = 0, x € R.
Writing  + ¢z for = in (58), we get
[D(z +tz),x + tz], 2 + tz]D(x + tz)yD(x + tz)D?*(x + t2)
= g(2)D(2)yD(x)D*(x) + t{([B(z, 2), 2] + [f (), 2])) D(x)
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+9(x)D(2))yD(x) D*(x) + g(x) D(x)y(D(2)D*(z) + D(x)D*(2))}
+ tle(IIZ, Y, Z) + tSNQ(JC, Y, Z) + t4N3(IE, Y, Z) + t5N4(£L‘, Y, Z)
(59) +15g(2)D(2)yD(2)D*(2) =0, z,y,2 € R, t € S5,

where N1, No, N3 and N4 denote the term satisfying the identity (59).
From (58) and (59), we obtain

H([B(x, 2), 2] + [f(z), 2])) D(x)
+9(2)D(2))yD(x)D*(z) + g(z)D(2)y(D(2)D*(z) + D(x) D*(2))}
+ 2Ny (z,y, 2) + 2Ny (2,5, 2) + t* N3(z, y, 2) + tONy(z, y, 2)
(60) =0, x,y,z€ R, t € Ss.
Since R is 5!-torsion free, by Lemma 2.1 the relation (60) yields
([B(z,2), 2] + [f (), 2])) D(z) + g(2)D(2))yD(x) D* ()
(61) + g(z)D(z)y(D(2)D*(z) + D(z)D?*(2)) = 0, z,9,2 € R.
Writing wg(x)D(x)y for y in (61), we get
([B(x,2), 2] + [f(2), 2])) D(x) + g(x) D(2))wg(x) D (z)yD(x) D*(x)
(62)  + g(w)D(x)wg(z)D(x)y(D(2)D*(x) + D(x)D*(2)) =0, ,y,2 € R.
From (58) and (62),
(63)  g(z)D(zx)wg(x)D(x)y(D(2)D*(x) + D(x)D*(2)) = 0, z,y,z € R.
Replacing y(D(z)D?(x) + D(z)D?(z))w for w in (63), we get
9(@)D()y(D(=)D*(x) + D(x)D*(2))wg(x) D(w)y{ D(z) D ()
(64) + D(x)D?*(2)} =0, z,y,2 € R.
Since R is semiprime, we get from (64)
(65) g(x)D(z)y(D(2)D?*(z) + D(x)D?*(2)) = 0, ,y,2 € R.
Writing = + tw for x in (31), we get
[f(z + tw), z + tw]D(x + tw)y(D(2)D?*(x + tw) + D(x + tw)D?(z))
= g(2)D(2)y(D(2)D*(z) + D(x) D*(2)) + t{D(w)g(z) + ([B(z, w), ]
+ (), W) D(@) + 9(2) D(w))y(D(:)D*(x) + D(z)D*(2))
+9(2)D(x)y(D(2) D?(w)+D(w) D*(2)) } +* Pr(z, y, 2) +° P, y, 2)
+Py(2,y, 2) + £9(w) D(w)y(D()D*(w) + D(w)D(2))
(66) =0, z,y,z € R, t € S5,

where P;, P, and P5 denote the term satisfying the identity (66).
From (65) and (66), we obtain

H([B(z, w), 2] + [f(z), w]) D(z)
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+ g(2)D(w))y(D(2) D*(z) + D(2)D*(2)) + g(x)D(x)y(D(2) D* (w)
+ D(w)D?(2))} + 12 Pr(2,y, 2) + t° Pa(2,y, )
(67) +t'P3(2,y,2) =0, w,z,y,2 € R, t € Ss.
Since R is 5!-torsion free, by Lemma 2.1 the relation (67) yields
([B(z,w),z] + [f(x), w])D(x)
+ g(2)D(w))y(D(2) D*(x) + D(2)D*(2)) + g(x)D(x)y(D(2) D* (w)
(68) + D(w)D?*(2)) =0, w,z,y,2 € R.
Writing vg(z)D(z)y for y in (68), we get
([B(z,w),x] + [f (x),w])D(x)
+ g(a) D(w))vg () D(x)y(D(2) D*(x) + D(x) D*(2))
(69) + g()D(z)vg(x) D(z)y(D(2)D*(w) + D(w)D*(2)) =0, w,z,y,z € R.
From (65) and (69),
(70)  g(z)D(x)vg(x) D(z)y(D(2)D*(w) + D(w)D*(2)) = 0, v,w,z,y,z € R.
Replacing y(D(z)D?(w) + D(w)D?(z))v for v in (70), we get
9(2)D(x)y(D(2) D*(w) + D(w) D*(2))vg(z) D(2)y{D(2) D*(w)
(71) + D(w)D?*(2)} =0, v,w,x,y,2 € R.

D
D

Since R is semiprime, we get from (71)
(72) g(x)D(z)y(D(2)D*(w) + D(w)D?*(2)) = 0, w,z,y,2 € R.
Putting D(z)w instead of for w in (72), we have
9(x)D(@)y{D(2)* D*(w) + 2D (2) D*(2)w + D(2) D*(z)w
(73) + D(2)D(w)D?(2) + D*(2)wD?(2)} = 0, w, x,y, 2 € R.
From (58), (72) and (73), we obtain
(74) g(x)D(x)y{D(2)D*(2)w + D*(2)wD?*(2)} = 0, w,z,y,z € R.
Writing wD(z) for w in (74), we get
(75) g(x)D(z)y{D(2)D3(2)wD(z) + D*(2)wD(2)D?*(2)} = 0, w,z,y,2 € R.
From (58) and (75), we obtain

(76) g(z)D(z)yD(2)D?(2)wD(z) = 0, w,z,y,2 € R.
Right multiplication of (76) by g(z) leads to
(77) g(2)D(2)yD(2)D?(2)wD(2)D?*(2) = 0, w,z,y,z € R.

Substituting wg(x)D(x)y for w in (77), we have
(78)  g(z)D(2)yD(2) D*(2)wg(x)D(x)yD(2)D*(2) = 0, w,z,y,2 € R.
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Since R is semiprime, it follows from (78) that

(79) 9(z)D()yD(2)D*(2) =0, x,y,z € R.
From (74) and (79), we obtain
(80) g(z)D(z)yD?*(2)wD?*(2) = 0, w,x,y, 2 € R.

Substituting wg(x)D(x)y for w in (80), we get

(81) g(x)D(z)yD?*(2)wg(z)D(x)yD?*(z) = 0, w,z,y,z € R.
Since R is semiprime, it follows from (81) that

(82) g(x)D(x)yD?*(z) =0, z,y,2 € R.

Replacing zz for z in (82), we get

(83) D(x)g(x)y(xD*(2)w + 2D(x)D(z) + D*(z)z) = 0, z,y,2 € R.
From (82) and (83), we obtain

(84) 2g(z)D(z)yD(x)D(z) =0, z,y,z € R.

Since R is 3!-torsion free, it follows from (84) that

(85) g(z)D(x)yD(x)D(z) =0, z,y,z € R.

Writing zz for z in (85), we get

(86) g(x)D(x)y{D(x)D(z)x + D(z)zD(z)) =0, z,y,z € R.
From (85) and (86), we obtain

(87) g(z)D(x)yD(x)2D(x) =0, x,y,z € R.
Substituting zg(x)D(x)y for z in (87), we get

(38) 9(@)D(@)yD(x)z9() D(@)yD(z) = 0, z,y,2 € R
Since R is semiprime, it follows from (88) that

(89) g(x)D(z)yD(x) =0, z,y,z € R.

Putting yg(x) for y in (89), we get

(90) 9(x)D(z)yg(z)D(x) = 0, 2,y € R.

Since R is semiprime, we obtain from (90)

(91) g(x)D(xz) =0, x € R. 0

Theorem 3.7. Let R be a 5!-torsion free semiprime ring. Let D : R — R be
a Jordan derivation on R. Then

[D(z),z]D(z)?> =0 < D(z)*[D(z),z] =0
for every x € R.
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Proof. The proof of the commutative case is trivial. Thus it suffices to prove
the case that R is noncommutative.
Necessity: Assume that

(92) [D(x),z]D(z)? = f(x)D(x)* =0, = € R.
Replacing x + ty for = in (92), we have
[D(x + ty),  + ty| D(x + ty)?
= f(2)D(x)* + t{B(,y)D(x)* + f(2)D(y) D(x) + f(2)D(z)D(y)}
(93) + t°Hy(2,y) + t*Hy(z,y) + t* f(y)D(y)* = 0, z,y € R, t € S5,

where H;, Hy denote the term satisfying the identity (93).
From (92) and (93), we obtain

t{B(z,y)D(x)* + f(x)D(y)D(x) + f(2)D(x)D(y)}
(94) +t2Hy (z,y) + t*Ha(z,y) =0, 2,y € R, t € S5.
Since R is 5!-torsion free, by Lemma 2.1 the relation (94) yields
(95) B(x,y)D(x)* + f(2)D(y) D(x) + f(2)D(2)D(y) = 0, =,y € R.
Writing zy for y in (95), we have
wB(x,y)D(x)* + 2f (x)yD(x)* + D(x)[y, 2] D(x)?
+ f(@)zD(y)D(x) + f(x)D(2)yD(x) + f(z)D(x)zD(y)
(96) + f(2)D(2)’y =0, z,y € R.
Left multiplication of (95) by z leads to
(97)  aB(x,y)D(x)* + 2 f(2)D(y)D(x) + xf(z)D(x)D(y) = 0, =,y € R.
From (96) and (97), we obtain
2f(2)yD(x)* + D(w)ly, 2] D(2)* + g(x) D(y) D(x)
+ f(2)D(x)yD(z) + {g(x)D(z) + f(2)*}D(y)
(98) + f(z)D(x)?y =0, 2,y € R.
From (92) and (98), we obtain
2f(2)yD(x)* + D(z)ly, 2] D(x)* + g(2)D(y) D(x

(99)  + f(2)D(2)yD(x) + {g(x)D(x) + f(x)*} D(y)
Writing yD(x) for y in (99), we have

2f(2)yD(x)’+D(2)[y, 2] D(2)’ + D()y f (x) D(x)*+g(x) D(y) D(x)*

+g(x)yD*(x) D(x)+ f () D(x)yD(x)*+{g(x)D(x) + f(2)*} D(y) D(x)
(100) + {g(z)D(z) + f(2)*}yD?*(z) =0, z,y € R.

~

0, z,y € R.
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Right multiplication of (99) by D(x) leads to
2f(2)yD(x)* + D(x)ly, 2] D(x)* + g() D(y) D(x)*
(101)  + f(z)D(x)yD(2)* + {g(z)D(z) + f(2)*}D(y)D(x) = 0, z,y € R.
From (100) and (101), we obtain
D(2)yf(2)D(x)* + g()yD?(x) D(x)

(102) T {g(2)D(@) + [(@)*}yD(x) = 0, 2,y € R
From (92) and (102), we obtain
(103) 9(2)yD*(2)D(x) + {g(2)D(x) + f(z)*}yD*(x) = 0, =,y € R.

On the other hand, we get from (92)
0= [f(2)D(x)? 2]
(104) = g(x)D(x)* + f(2)*D(z) + f(z)D(2)f(z), z € R.
On the one hand, let y = 22 in (95). Then we obtain
0= B(x,2*)D(x)* + f(2)D(2*)D() + f(2)D(x)D(z?)
= 2(f(2)z + 2f(2))D(x)* + f(2)(D(z)z + 2D(x))D(x)
+ f(2)D(x)(D(x)z + xD(x))
(105) = 3f(x)xD(x)*+2xf(x)D(x)*+2f(x)D(x)xD(x)+ f(2)D(z)*z, € R.
From (92) and (105), we obtain
3f(x)xD(x)? + 2z f(2)D(x)* + 2f (z)D(x)xD(z) + f(x)D(x)*x
(106) =0, z€R.

Since 3z f(z)D(x)? = 0,2z f(x)D(x)? = 0 holds for all z € R from (92), we get
from (106)

0= 3g(2)D(x)* + 2(g(x) D(x) + f(2)*)D(x)
(107) = 5g(x)D(z)* + 2f(z)>D(z), = € R.
Substituting D(z)y for y in (107), we have
(108) g(z)D(x)yD*(x)D(x)+{g(x)D(x)*+f(x)*D(x)}yD*(x) = 0,2,y € R.
From (104) and (108), we obtain
(109) 9(x)D(x)yD*(x)D(x) — f(2)D(x)f(2)yD*(z) =0, ,y € R.
Replacing D(x)?y for y in (109), we get
(110)  g(2)D(x)*yD*(x)D(x) — f(2)D() f(2)D(x)*yD*(x) = 0, z,y € R.
From (92) and (110), it follows that
(111) g(z)D(z)3yD?*(x)D(x) =0, z,y € R.
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Putting D(x)y instead of y in (108), we arrive at
(112) g(x)D(x)2yD?(2)D(x) +{g(x) D(@)* + f () D(x)*yD*(x) =0,z,y € R.
From (92), (111) and (112), one obtains
(113) g(z)D(x)*yD?*(x)D(x) =0, x,y € R.
Substituting 2yD?(x)D(x)z for y in (108), we have
29(2)D()yD? (2) D(x)=D?(x) D(x)
(114)  + {2g(2)D(x)? + 2/ (x)* D(x) }yD* (@) D()=D*(x) = 0, ,y,% € R.
From (113) and (114), we get
29(2)D()yD*(2) D()=D?(x) D(x)
(115) +2f(z)?D(x)yD?*(z)D(x)2D*(x) = 0, x,y,2 € R.
From (107) and (115),
29(2)D()yD?(2) D()=D*(x) D(x)
(116) — 5g9(z)D(2)*yD?(z)D(x)2D*(z) = 0,2,y,2 € R.
From (113) and (116), we arrive at
(117) 2g(2)D(x)yD?*(x)D(x)2D?*(z)D(z) = 0, x,y,2 € R.
Since R is 3!-torsion free, it follows from (117) that
(118) g(2)D(z)yD?(x)D(x)2D*(x)D(x) = 0, z,y,z € R.
Replacing zg(x)D(z)y for z in (118), we obtain
(119) g(x)D(z)yD?(x)D(2)2g(x)D(x)yD?*(x)D(x) = 0, ,y,z € R.
By the semiprimeness of R, we get from (119)
(120) g(x)D(x)yD?*(x)D(x) = 0,2,y € R.
Substituting D(x)y for y in (99), we have
2/(2)D@)yD(@)* + D(x)ly, 21 D(x)* + D(x) f(2)yD(x)?
+ g(2)D(x) D(y)D(x) + g(x) DX(@)yD(x) + f(2)D(x)*yD(x)
+{g(2)D(2)*+ f (2)*D(2)} D(y)+{g(x) D(2) D*(w) + f (x)*D* () }y
(121) =0, z,y € R.

Left multiplication of (99) by D(z) leads to
2D(2) f(2)yD(x)? + D(x)2ly, 2]D(x)? + D(2)g(x)D(y)D(x)
+ D) f(2)D(@)yD(x) + {D(x)g(x)D(x) + D(x)f(x)*}D(y)
(122) =0, z,y € R.

From (121) and (122), we obtain
{2f(2)D(x) — D(x)f () }yD(x)?
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+{g(z)D(z) — D(x)g(x)}D(y)D(x) + g(x) D*(x)yD(x)

+{f(2)D(x)? - D(x)f () D(z)}yD()

+{9(z)D(2)* + f(2)’D(x) — D(x)g(x)D(x) — D(x)f(x)*}D(y)
(123)  +{g(x)D(z)D*(x) + f(2)*D*(x)}y = 0, =,y € R.
From (92) and (123), we obtain

{2f(2)D(x) — D(x)f(2)}yD(x)?

+{g(x)D(x) — D(x)g(x)}D(y) D(x) + g(x) D*(z)yD(x)

D(z)f(x)D(z)yD(x)

+{9(z)D(2)* + f(2)’D(x) — D(x)g(x)D(x) — D(x)f(x)*} D(y)

(124)  +{g(x)D(z)D*(x) + f(2)*D*(x)}y = 0, =,y € R.

fla
)+
Writing yD(x) for y in (124), we have
{2f(2)D(x) — D(x)f(2)}yD(x)’
+ {g(x)D(x) — D(x)g(x)}D(y) D(w)*
+{9( )D() — D(x)g(z)}yD*(z) D(x)
+ g(2)D*(@)yD(x)? — D(x)f(x)D(x)yD(x)?
+{9(2)D(2)* + f(2)*D(x) — D(z)g(x)D(x) — D(x)f(x)*} D(y) D(x)
(125) + {g(e)D(@)D3(x) + f(2)*D*(x)}yD(x) = 0, 2,y € R.
y D(z) leads to
z)tyD

Right multiplication of (124

{2f(2)D(x) — D(x)f
+{9(z)D(x) — D(x)g(x)} D
— D(2)f(2)D(x)yD(x)*
+{9(2)D(2)* + f(2)*D(x) — D(x)g()D(x) — D(x)f(x)*} D(y) D(x)
(126) + {g(x)D(2)D*(x) + f(2)*D*(2)}yD(x) = 0, v,y € R.

) b
( z)?

(
(y)D(x)* + g() D*(z)yD(x)*

From (125) and (126), we obtain

(127) {9(2)D(x) — D(z)g(z)}yD*(z)D(x) = 0, z,y € R.
From (120) and (127), we obtain

(128) D(2)g(z)yD?*(x)D(z) =0, x,y € R.

By Lemma 3.4, we get from (128)

(129) D(z)g(xz) =0, z € R.

Hence by Lemma 3.2, we obtain from (129), we get
(130) 3D(z)?f(z) — D(z)f(x)D(x) =0, = € R.
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Right multiplication of (107) by D(x) leads to
(131) 5g9(2)D(z)® +2f(z)?’D(z)?> =0, = € R.
From (92) and (131), we obtain
(132) 5g(z)D(x)® =0, z € R.
Since R is 5!-torsion free, we get from (132)
(133) g(x)D(z)* =0, 2,y € R.
Replacing D(z)2y for y in (103), we have
(134) g(2)D(@)*yD?(2)D(w)+{g(x) D()*+ £ (22 D(x)*yD* () =0, z, y € .
From (92), (133) and (134), we obtain
(135) g(z)D(z)?*yD?*(x)D(z) =0, z,y € R.
Writing 2D(x)y for y in (103), we have
(136) 2g(x)D(x)yD?(x)D(x)+{2g(x)D(x)*+2f(z)*D(x) }yD?*(x) =0, z,y € R.
From (107) and (136), we obtain
(137) 2g(x)D(z)yD?*(x)D(z) — 3g(x)D(x)*yD?*(x) = 0, x,y € R.
Replacing yD?(z)D(x)z for y in (137), we have
29(2)D(2)yD? () D ()2 D (2) D(x)
)D

(138) — 3¢(2) D(2)*yD*(2)D(2)zD*(x) = 0, ,y,z € R.
From (135) and (138), we obtain
(139) 2g(2)D(x)yD?*(x)D(x)2D?*(z)D(z) =0, x,y,2 € R.

Since R is 5!-torsion free, we get from (139)

(140) g(2)D(z)yD?*(x)D(z)2D*(z)D(x) = 0, z,y,2 € R.
Replacing zg(x)D(x)y for z in (140), we have

(141) g(x)D(z)yD?(x)D(2)2g(x)D(x)yD?*(z)D(x) = 0, ,y,z € R.

Since R is semiprime, it follows from (141) that

(142) g(x)D(x)yD?*(x)D(x) =0, x,y € R.
By Lemma 3.3, we get from (142)
(143) g(z)D(z) =0, z € R.

Hence by Lemma 3.1, we obtain from (143), we get

(144) 3f(x)D(x)* — D(z)f(x)D(x) =0, = € R.
Thus combining (130) with (144), we have

(145) 3(f(z)D(x)* — D(z)*f(x)?) =0, = € R.
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Since R is 3!-torsion free, it follows from (145) that

(146) f(x)D(z)? — D(z)?f(2) =0, z € R.

Thus from (92) and (146), we get
D(x)*f(z) =0, = € R.

Sufficiency: Assume that
(147) D(x)*[D(z),z] = D(z)*f(x) =0, z € R.
Replacing x + ty for = in (147), we have
D(z + ty)*[D(z + ty), = + ty]
= D(x)*f(x) + H{D(y)D(x) f(x) + D(z)D(y) f (x) + D(x)* B(z, y)}
(148) +12Q1(z,y) + 2Qa(z,y) + t'D(y)*f(y) =0, 2,y € R, t € Ss,

where Q1 and Q2 denote the term satisfying the identity (148).
From (147) and (148), we obtain

t{D(y)D(x) f(x) + D(x)D(y) f () + D(z)*B(z, y)}

(149) + 2P (z,y) + t*Py(z,y) =0, 2,y € R, t € Ss.
Since R is 3!-torsion free, by Lemma 2.1 the relation (149) yields
(150)  D(y)D(@)f(x) + D(x)D(y)(x) + D(@)*Blz,y) =0, 2,y € R
Right multiplication of (150) by = leads to
(151)  D(y)D(x)f(x)x + D(z)D(y)f(z)x + D(z)*B(z,y)xz =0, =,y € R.
Substituting yz for y in (150), we have

D(y)zD(x)f(z) +yD(x)*f(x) + D(z)D(y)z f(z) + D(z)yD(z) f(z)
(152)  + D(2)*B(z,y)x + 2D(x)*yf(x) + D(z)?[y,z]D(z) = 0, z,y € R.
From (151) and (152), we obtain

D(y){f(z)* + D(z)g(z)} — yD(x)* f(z) — D(x)yD(x)f(x)
(153)  + D(2)D(y)g(x) — 2D(2)*yf(x) — D(2)*[y,2]D(z) = 0, x,y € R.
From (147) and (153), we obtain
D(y){f(2)* + D(z)g(x)} — D(z)yD(x)f(z) + D(x)D(y)g()
(154) —2D(x)*yf(x) — D(x)?[y, 2]D(x) = 0, z,y € R.
On the one hand, let y = 22 in (150). Then we arrive at
0= D(a*)D()f(x) + D(z)D(a?) f(x) + D(z)*B(,2%)
= {D(z)z + zD(x)} D(x) f(z) + D(@){D(x)z + xD(z)} f(z)
+2D(2)*{f(z)z + xf(x)}
= D(w)zD(x)f(z) + 2D(2) f(z) + D(x)*zf () + D(x)xD()f ()
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+2D(2)*{f(2)a + xf(2)}
= D(w)zD(x)f(z) + 2D(2)* f(x) + D(z)*zf () + D(x)aD(z)f ()

+2D(x)’ f(z)x +2D(2)’x f(z)
(155) = 2D(z)xD(x)f(z)+aD(x)*f(x)+3D(x)*xf(x)+2D(x)* f(z)z, = € R.
From (147) and (155), we obtain
(156) 2D(z)zD(z)f(z) + 3D(x)%xf(x) =0, = € R.
From (147) and (156), we have

0= —{2D(x)[z, D(x)f ()] + 3D(x)*[z, f ()]}
= 2D(x)f(x)* + 2D(x)*g(z) + 3D(x)’g()
(157) =2D(x)f(z)? + 5D (x)*g(x), = € R.
Writing D(x)y for y in (154), we have
D(2)D(y){f(x)* + D(x)g(x)} + D*(2)y{f(2)* + D(w)g()}
— D(2)*yD(x) f(z) + D(2)*D(y)g(x )+D( )D*(x)yg()

(158)  —2D(2)’yf(z) — D(2)’[y, ] D(z) — D(x)*f(2)yD(x) =0, 2,y € R.
Left multiplication of (154) by D(z) leads to

D@)D(){f(2)? + D@)g(x)} — D(x)*yD(x)(x) + D(x)*D(y)g(x)
(159) - 2D(@)yf(x) — D()ly 2]D(x) = 0, 7,y € R
From (158) and (159),
D*(z)y{f(2)* + D(z)g(x)} + D(z)D*(x)yg(x)
(160) — D(x)?f(z)yD(x) =0, =,y € R.
From (147) and (160), we obtain
(161) D*(z)y{f(2)* + D(2)g(x)} + D(2)D*(z)yg(x) = 0, =,y € R.
Putting 2D(x)y instead of y in (161), we have
(162) D*(z)y{2D(z)f(x)*+2D(x)%g(x)}+2D(x) D*(x)yD(x)g(x) =0, z,y € R.
From (157) and (162), we obtain
(163) —3D%*(2)yD(x)*g(x) + 2D(z)D?*(z)yD(z)g(xz) = 0, z,y € R.
Left multiplication of (157) by D(z) yields
(164) 2D(z)?f(x)* + 5D(x)3g(z) =0, x € R.
From (147) and (164), we have
(165) 5D(z)%g(z) =0, = € R.
Since R is 5! torsion free, it follows from (165) that
(166) D(z)*g(x) =0, v € R.

we obtain
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Replacing yD(z) for y in (163), we have
(167) —3D?(z)yD(x)*g(z) + 2D(2) D*(x)yD(z)?*g(x) = 0, z,y € R.
From (166) and (167), we have
(168) 2D(x)D?(z)yD(x)?g(z) =0, = € R.
Since R is 5! torsion free, it follows from (168) that
(169) D(x)D?*(x)yD(z)?g(z) =0, = € R.
Replacing zD(z)D?(x)y for y in (163), we obtain
— 3D(2)2D(2) D*(2)yD(x)g(x)

(170) +2D(2)D*(2)2D(x)D?*(x)yD(z)g(z) = 0, =,y € R.
From (169) and (170), we have

(171) 2D(z)D?(x)zD(x)D?(z)yD(x)g(z) =0, 2,y € R.
Since R is 5! torsion free, we get from (171)

(172) D(z)D*(z)2D(2)D*(x)yD(z)g(x) = 0, z,y € R.
Substituting yD(z)g(x)z for z in (172), we obtain

(173)  D(x)D*(x)yD(x)g(x)>D(x) D*(x)yD(x)g(x) = 0, .y € R.
By the semiprimeness of R, it follows from (173) that

(174) D(x)D?*(x)yD(x)g(z) =0, =,y € R.

Thus by Lemma 3.4, we get from (174)

(175) D(z)g(xz) =0, z € R.

Hence by Lemma 3.2, we have from (175)

(176) 3D(x)%f(x) — D(z)f(z)D(x) =0, = € R.
From (147) and (176), we get

(177) D(z)f(z)D(z) =0, z € R.

From (177), we get
0 =[D(x)f(x)D(x), x]

(178) = f(2)?D(x) + D(z)g(z)D(x) + D(x) f(z)?, x € R.
From (175) and (178), we get

(179) f(@)’D(x) + D(2)f(2)* =0, = € R.

From (161) and (175), we obtain

(180) D?()yf(2)? + D(w) D(x)yg(x) = 0, z,y € R.
From (157) and (175), we have

(181) 2D(x)f(z)* =0, = € R.
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Since R is 5! torsion free, we get from (181)

(182) D(z)f(x)> =0, z € R.
From (179) and (182), we have

(183) f(x)?D(x) =0, z € R.
Right multiplication of (180) by D(x) yields

(184)  D*(@)yf(2)*D(x) + D(z)D*(w)yg(x)D(x) =0, 2,y € R.
From (183) and (184), we have

(185) D(x)D?*(z)yg(z)D(x) =0, = € R.
Thus Lemma 3.3, (185) yields
(186) g(x)D(xz) =0, z € R.
By Theorem 3.1, we obtain from (186)
(187) 3f(z)D(x)* — D(z)f(z)D(x) =0, = € R.
From (176) and (187), we obtain
(188) 3(f(2)D(z)* — D(2)*f(z)) =0, = € R.
Since R is 5! torsion free, we get from (188)
(189) f(x)D(x)* — D(z)*f(x) =0, = € R.
From (147) and (189), we get

f(x)D(z)* =0, z € R. O

Remark 3.8. Let R be a 3!-torsion free semiprime ring. Let D : R — R be a
Jordan derivation on R. In this case, by some calculations, it is checked that if
[D(z),z]D(x)? = 0 for every x € R, then f(z) = [D(z),z] =0 for all z € R.

The following theorem is nearly proved by the same arguments as in the
proof of J. Vukman’s theorem [17].

Theorem 3.9. Let A be a Banach algebra with rad(A). Let D : A — A be a
continuous linear Jordan derivation. In this case, we show that

[D(x),z]D(z)? € rad(A) <= D(x)*[D(z),z] € rad(A)
for every x € A.

Proof. 1t suffices to prove the case that A is noncommutative. By the result
of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisimple
Banach algebra is continuous. Sinclair [9] has proved that every continuous
linear Jordan derivation on a Banach algebra leaves the primitive ideals of A
invariant. Hence for any primitive ideals P C A one can introduce a derivation
Dp : A/JP — A/P, where A/P is a prime and factor Banach algebra, by
Dp(2) = D(z) + P, & = = + P. We see that if [D(z),z]D(x)? € rad(A),
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we obtain [D(x),x]D(z)? € rad(A) C P for all primitive ideals of A, then
[Dp(i),#)(Dp(2))? = 0. Then since A/P is a prime factor Banach algebra
for all primitive ideals of A, by Theorem 3.7, we get [Dp(%),2](Dp(2))? =
0 < (Dp(#))?[Dp(i),#] =0, & € A/P for all primitive ideals of A. Hence
we conclude that D(x)?[D(z),z] € P for all x € A and for all primitive ideals
P of A. Therefore since rad(4) = N{P : P is any primitive ideals of A}, it
follows that

[D(x),z]D(z)? € rad(A) <= D(x)?*[D(x),z] € rad(A)
for every = € A. O

As a special case of Theorem 3.9 we get the following result which charac-
terizes commutative semisimple Banach algebras.

Corollary 3.10. Let A be a semisimple Banach algebra. Suppose
Hy7 x], l‘]][y, x}Q =0 < [y> x]z[[% 'T]7 ;C] =0
for every x,y € A.

Proof. Let 0,(x) = [y, z], [y, z], ] = [§,(z),z],D = 6, for all z,y € R. Hence
we see that ¢, is a continuous (Jordan) derivation on A. Since A is semisimple,
rad(A) = (0). Thus all the conditions of Theorem 3.10 are fulfilled. O
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