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THE PROPERTIES OF JORDAN DERIVATIONS OF

SEMIPRIME RINGS AND BANACH ALGEBRAS, I

Byung Do Kim

Abstract. Let R be a 5!-torsion free semiprime ring, and let D : R → R

be a Jordan derivation on a semiprime ring R. Then [D(x), x]D(x)2 = 0
if and only if D(x)2[D(x), x] = 0 for every x ∈ R. In particular, let A

be a Banach algebra with rad(A) and if D is a continuous linear Jordan
derivation on A, then we show that [D(x), x]D(x)2 ∈ rad(A) if and only

if D(x)2[D(x), x] ∈ rad(A) for all x ∈ A where rad(A) is the Jacobson

radical of A.

1. Introduction

Throughout, R represents an associative ring and A will be a complex Ba-
nach algebra. We write [x, y] for the commutator xy − yx for x, y in a ring. A
ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R is prime
if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0)
implies a = 0. rad(A) denotes the Jacobson radical of a Banach algebra A. We
say that A is semisimple if rad(A) = (0) (see Bonsall and Duncan [1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(x)y + xD(y) holds for all x, y ∈ R. And an additive mapping D from R to
R is called a Jordan derivation if D(x2) = D(x)x+ xD(x) holds for all x ∈ R.

Johnson and Sinclair [5] have proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer [14] states
that every continuous linear derivation on a commutative Banach algebra maps
the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas [15] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.

Vukman [17] has proved the following: let R be a 2-torsion free prime ring.
If D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all x ∈ R, then
D = 0.
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Moreover, using the above result, he has proved that the following holds: let
A be a noncommutative semisimple Banach algebra. Suppose that

[D(x), x]D(x) = 0

holds for all x ∈ A. In this case, D = 0. See [2], [6], [7], [8], [10], [12], [13] and
[16] for further results.

In this paper, we generalize the statement of Theorem 3.1 in [11] except the
torsion free condition, and we shall give a generalization of Theorem 3.2 and
its application to the Banach algebra theory.

2. Preliminaries

The following lemma is due to Chung and Luh [4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist elements
y1, y2, . . . , yn−1, yn in R such that

∑n
k=1 t

kyk = 0 for all t = 1, 2, . . . , n. Then
we have yk = 0 for every positive integer k with 1 ≤ k ≤ n.

The following theorem is due to Bres̆ar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R −→ R
be a Jordan derivation. In this case, D is a derivation.

The following theorems are due to Kim [11].

Theorem 2.3. Let R be a 3!-torsion free semiprime ring. Let D : R −→ R be
a Jordan derivation on R. In this case, it follows that

[D(x), x]D(x) = 0 ⇔ D(x)[D(x), x] = 0

for every x ∈ R.

Theorem 2.4. Let A be a Banach algebra with rad(A). Let D : A −→ A be a
continuous linear Jordan derivation. Then we obtain

[D(x), x]D(x) ∈ rad(A) ⇐⇒ D(x)[D(x), x] ∈ rad(A)

for every x ∈ A.

3. Main results

We need the following notations. After this, by Sm we denote the set {k ∈
N | 1 ≤ k ≤ m}, wherem is a positive integer. When R is a ring, we shall denote
the maps B : R×R→ R, f, g, h, F : R→ R by B(x, y) ≡ [D(x), y] + [D(y), x],
f(x) ≡ [D(x), x], g(x) ≡ [f(x), x], h(x) ≡ [g(x), x], F (x) ≡ [D2(x), x] for
all x, y ∈ R respectively. And in particular, for a Jordan derivation D on
R, we shall denoted it by D2(x) = (D ◦ D)(x) = D(D(x)), and Dn(x) =
(D ◦Dn−1)(x) = D(Dn−1(x)) for all integers n ≥ 2 and all x ∈ R. Moreover,
we have the basic properties:

B(x, y) = B(y, x), B(x, yz) = B(x, y)z + yB(x, z) +D(y)[z, x] + [y, x]D(z),

B(x, yD(x)) = B(x, y)D(x) + yF (x) +D(y)f(x) + [y, x]D2(x),
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B(x,D(x)y) = D(x)B(x, y) + F (x)y + f(x)D(y) +D2(x)[y, x],

B(x, x) = 2f(x), B(x, x2) = 2(f(x)x+ xf(x)), x, y, z ∈ R.

Theorem 3.1. Let R be a 3!-torsion free semiprime ring. Suppose there exists
a Jordan derivation D : R −→ R such that

[[D(x), x], x]D(x) = 0

for all x ∈ R. Then we have 3f(x)D(x)2 −D(x)f(x)D(x) = 0 for all x ∈ R.

Proof. Let R be a commutative ring. Then f(x) = [D(x), x] = 0 for all x ∈ R.
Hence it is clear that 3f(x)D(x)2 − D(x)f(x)D(x) = 0 holds for all x ∈ R.
Thus it is sufficient to prove the above statement in the noncommutative case
of R. By Theorem 2.2, we can see that D is a derivation on R.

Assume that

[[D(x), x], x]D(x) = [f(x), x]D(x) = g(x)D(x) = 0, x ∈ R.(1)

Replacing x+ ty for x in (1), we have

[[D(x+ ty), x+ ty], x+ ty]D(x+ ty)

≡ [[D(x), x], x]D(x) + t{[B(x, y), x]D(x)

+ [f(x), y]D(x) + g(x)D(y)}+ t2G1(x, y)

+ t3G2(x, y) + t4g(y)D(y) = 0, x, y ∈ R, t ∈ S3,(2)

where G1 and G2 denote the term satisfying the identity (2).
From (1) and (2), we obtain

t{[B(x, y), x]D(x) + [f(x), y]D(x) + g(x)D(y)}+ t2G1(x, y)

+ t3G2(x, y) = 0, x, y ∈ R, t ∈ S3.(3)

Since R is 3!-torsion free, by Lemma 2.1 the relation (3) yields

[B(x, y), x]D(x) + [f(x), y]D(x) + g(x)D(y) = 0, x, y ∈ R.(4)

Let y = x2 in (4). Then using (1), we get

0 = 2{[f(x)x+ xf(x), x]}D(x) + (g(x)x+ xg(x))D(x)

+ g(x)(D(x)x+ xD(x))

= 2g(x)xD(x) + 2xg(x)D(x) + g(x)xD(x) + xg(x)D(x)

+ g(x)D(x)x+ g(x)xD(x)

= 4g(x)xD(x) + 3xg(x)D(x) + g(x)D(x)x

= 4g(x)xD(x) = 4h(x)D(x) = −4g(x)f(x) = 0, x ∈ R.(5)

Since R is 3!-torsion free, it follows from (5) that

h(x)D(x) = g(x)f(x) = 0, x ∈ R.(6)

Substituting yD(x) for y in (4), we arrive at

0 = [B(x, yD(x)), x]D(x) + [f(x), yD(x)]D(x) + g(x)D(yD(x))
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= [B(x, y)D(x) +D(y)f(x) + yF (x) + [y, x]D2(x), x]D(x)

+ ([f(x), y]D(x)2 + y[f(x), D(x)]D(x) + g(x)D(y)D(x) + g(x)yD2(x)

= [B(x, y)D(x), x]D(x) + [D(y)f(x), x]D(x) + [yF (x), x]D(x)

+ [[y, x]D2(x), x]D(x)

= [B(x, y), x]D(x)2 +B(x, y)f(x)D(x) + [D(y), x]f(x)D(x)

+D(y)g(x)D(x) + y[F (x), x]D(x) + [y, x]F (x)D(x) + [y, x]F (x)D(x)

+ [[y, x], x]D2(x)D(x) + [f(x), y]D(x)2 + y[f(x), D(x)]D(x)

+ g(x)D(y)D(x) + g(x)yD2(x), x, y ∈ R.(7)

Right multiplication of (4) by D(x) leads to

[B(x, y), x]D(x)2 + [f(x), y]D(x)2 + g(x)D(y)D(x) = 0, x, y ∈ R.(8)

From (7) and (8),

B(x, y)f(x)D(x) + [D(y), x]f(x)D(x) +D(y)g(x)D(x)

+ y[F (x), x]D(x) + [y, x]F (x)D(x) + [y, x]F (x)D(x)

+ [[y, x], x]D2(x)D(x) + y[f(x), D(x)]D(x) + g(x)yD2(x) = 0, x, y ∈ R.(9)

Combining (1) with (9),

B(x, y)f(x)D(x) + [D(y), x]f(x)D(x) + y[F (x), x]D(x)

+ [y, x]F (x)D(x) + [y, x]F (x)D(x) + [[y, x], x]D2(x)D(x)

+ y[f(x), D(x)]D(x) + g(x)yD2(x) = 0, x, y ∈ R.(10)

Writing xy for y in (10), we arrive at

0 = xB(x, y)f(x)D(x) + 2f(x)yf(x)D(x) +D(x)[y, x]f(x)D(x)

+ [xD(y) +D(x)y, x]f(x)D(x) + xy[F (x), x]D(x)

+ x[y, x]F (x)D(x) + x[y, x]F (x)D(x) + x[[y, x], x]D2(x)D(x)

+ xy[f(x), D(x)]D(x) + g(x)xyD2(x)

= xB(x, y)f(x)D(x) + 2f(x)yf(x)D(x) +D(x)[y, x]f(x)D(x)

+ x[D(y), x]f(x)D(x) +D(x)[y, x]f(x)D(x)

+ f(x)yf(x)D(x) + xy[F (x), x]D(x)

+ x[y, x]F (x)D(x) + x[y, x]F (x)D(x) + x[[y, x], x]D2(x)D(x)

+ xy[f(x), D(x)]D(x) + g(x)xyD2(x), x, y ∈ R.(11)

Left multiplication of (10) by x leads to

xB(x, y)f(x)D(x) + x[D(y), x]f(x)D(x) + xy[F (x), x]D(x)

+ x[y, x]F (x)D(x) + x[y, x]F (x)D(x) + x[[y, x], x]D2(x)D(x)

+ xy[f(x), D(x)]D(x) + xg(x)yD2(x) = 0, x, y ∈ R.(12)
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From (1), (11) and (12),

3f(x)yf(x)D(x) + 2D(x)[y, x]f(x)D(x) + h(x)yD2(x) = 0, x, y ∈ R.(13)

Substituting D(x)y for y in (13), we arrive at

3f(x)D(x)yf(x)D(x) +D(x)2[y, x]f(x)D(x) +D(x)f(x)yf(x)D(x)

+D(x)2[y, x]f(x)D(x) +D(x)f(x)yf(x)D(x)

+ h(x)D(x)yD2(x) = 0, x, y ∈ R.(14)

From (6) and (14),

{3f(x)D(x) + 2D(x)f(x)}yf(x)D(x) +D(x)2[y, x]f(x)D(x)

+D(x)2[y, x]f(x)D(x) = 0, x, y ∈ R.(15)

Left multiplication of (13) by D(x) leads to

3D(x)f(x)yf(x)D(x) +D(x)2[y, x]f(x)D(x)

+D(x)2[y, x]f(x)D(x) +D(x)h(x)yD2(x) = 0, x, y ∈ R.(16)

From (1), (15) and (16),

{3f(x)D(x)−D(x)f(x)}yf(x)D(x)−D(x)h(x)yD2(x) = 0, x, y ∈ R.(17)

Replacing D(x)y for y in (17), we arrive at

{3f(x)D(x)2 −D(x)f(x)D(x)}yf(x)D(x)−D(x)h(x)D(x)yD2(x)

= 0, x, y ∈ R.(18)

From (6) and (18),

{3f(x)D(x)2 −D(x)f(x)D(x)}yf(x)D(x) = 0, x, y ∈ R.(19)

Writing yD(x) for y in (19), we obtain

{3f(x)D(x)2 −D(x)f(x)D(x)}yD(x)f(x)D(x) = 0, x, y ∈ R.(20)

Right multiplication of (19) by 3D(x) leads to

{3f(x)D(x)2 −D(x)f(x)D(x)}y(3f(x)D(x)2) = 0, x, y ∈ R.(21)

From (20) and (21),

{3f(x)D(x)2 −D(x)f(x)D(x)}y(3f(x)D(x)2 −D(x)f(x)D(x))

= 0, x, y ∈ R.(22)

Since R is semiprime, it follows from (22) that

3f(x)D(x)2 −D(x)f(x)D(x) = 0, x ∈ R.(23) �

Using the same technique with necessary variations one can prove the fol-
lowing Theorem and statement Theorem 3.2 without the proof.
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Theorem 3.2. Let R be a 3!-torsion free semiprime ring. Suppose there exists
a Jordan derivation D : R −→ R such that

D(x)[[D(x), x], x] = 0

for all x ∈ R. Then we have 3D(x)2f(x)−D(x)f(x)D(x) = 0 for all x ∈ R.

Lemma 3.3. Let R be a 5!-torsion free semiprime ring. Let D : R −→ R be a
Jordan derivation on R. And assume that

D(x)g(x)yD2(x)D(x) = D(x)[f(x), x]yD2(x)D(x) = 0

for all x, y ∈ R. Then we have D(x)g(x) = D(x)[f(x), x] = 0 for all x ∈ R.

Proof. When R is commutative, we see that if f(x) = [D(x), x] = 0 for all
x ∈ R, then D(x)g(x) = D(x)[f(x), x] = 0 for all x ∈ R.

Hence it is sufficient to prove the above statement in the noncommutative
case of R. By Theorem 2.2, we can see that D is a derivation on R.

Suppose

D(x)g(x)yD2(x)D(x) = [f(x), x]D(x)yD2(x)D(x) = 0, x ∈ R.(24)

Writing x+ tz for x in (24), we get

D(x+ tz)[[D(x+ tz), x+ tz], x+ tz]yD2(x+ tz)D(x+ tz)

≡ D(x)g(x)yD2(x)D(x) + t{(D(z)g(x) +D(x)([B(x, z), x]

+ [f(x), z]))yD2(x)D(x) +D(x)g(x)y(D2(z)D(x) +D2(x)D(z))}
+ t2I1(x, y, z) + t3I2(x, y, z) + t4I3(x, y, z) + t5I4(x, y, z)

+ t6D(z)g(z)yD2(z)D(z) = 0, x, y, z ∈ R, t ∈ S5,(25)

where I1, I2, I3 and I4 denote the term satisfying the identity (25).
From (24) and (25), we obtain

t{(D(z)g(x) +D(x)([B(x, z), x] + [f(x), z]))yD2(x)D(x)

+D(x)g(x)y(D2(z)D(x) +D2(x)D(z))}+ t2I1(x, y, z) + t3I2(x, y, z)

+ t4I3(x, y, z) + t5I4(x, y, z) = 0, x, y, z ∈ R, t ∈ S5.(26)

Since R is 5!-torsion free, by Lemma 2.1 the relation (26) yields

{D(z)g(x) +D(x)([B(x, z), x] + [f(x), z])}yD2(x)D(x)

+D(x)g(x)y{D2(z)D(x) +D2(x)D(z)} = 0, x, y, z ∈ R.(27)

Writing wD(x)g(x)y for y in (27), we get

(D(z)g(x) +D(x)([B(x, z), x] + [f(x), z]))wD(x)g(x)yD2(x)D(x)

+D(x)g(x)wD(x)g(x)y(D2(z)D(x) +D2(x)D(z)) = 0, x, y, z ∈ R.(28)

From (24) and (28),

D(x)g(x)wD(x)g(x)y(D2(z)D(x) +D2(x)D(z)) = 0, x, y, z ∈ R.(29)
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Replacing y(D2(z)D(x) +D2(x)D(z))w for w in (29), we get

D(x)g(x)y(D2(z)D(x) +D2(x)D(z))wD(x)g(x)y{D2(z)D(x)

+D2(x)D(z)} = 0, x, y, z ∈ R.(30)

Since R is semiprime, we get from (30)

D(x)g(x)y(D2(z)D(x) +D2(x)D(z)) = 0, x, y, z ∈ R.(31)

Writing x+ tw for x in (31), we get

D(x+ tw)[f(x+ tw), x+ tw]y(D2(z)D(x+ tw) +D2(x+ tw)D(z))

≡ D(x)g(x)y(D2(z)D(x) +D2(x)D(z)) + t{D(w)g(x)

+D(x)([B(x,w), x] + [f(x), w]))y(D2(z)D(x) +D2(x)D(z))

+D(x)g(x)y(D2(z)D(w) +D2(w)D(z))}+ t2K1(x, y, z)

+ t3K2(x, y, z) + t4K3(x, y, z)

+ t5D(w)g(w)y(D2(z)D(w) +D(w)D2(z))

= 0, x, y, z ∈ R, t ∈ S5,(32)

where K1,K2,K3 denote the term satisfying the identity (32).
From (31) and (32), we obtain

t{D(w)g(x) +D(x)([B(x,w), x] + [f(x), w])y(D2(z)D(x) +D2(x)D(z))

+D(x)g(x)y(D2(z)D(w)+D2(w)D(z))}+ t2K1(x, y, z)+ t3K2(x, y, z)

+ t4K3(x, y, z)=0, w, x, y, z ∈ R, t ∈ S5.(33)

Since R is 5!-torsion free, by Lemma 2.1 the relation (33) yields

D(w)g(x) +D(x)([B(x,w), x] + [f(x), w]))y(D2(z)D(x) +D2(x)D(z))

+D(x)g(x)y(D2(z)D(w) +D2(w)D(z)) = 0, w, x, y, z ∈ R.(34)

Writing vD(x)g(x)y for y in (34), we get

D(w)g(x) +D(x)([B(x,w), x] + [f(x), w]))vg(x)D(x)y{D2(z)D(x)

+D2(x)D(z)}+D(x)g(x)vg(x)D(x)y(D2(z)D(w) +D2(w)D(z))

= 0, w, x, y, z ∈ R.(35)

From (31) and (35),

D(x)g(x)vD(x)g(x)y(D2(z)D(w) +D2(w)D(z)) = 0, v, w, x, y, z ∈ R.(36)

Replacing y(D2(z)D(w) +D2(w)D(z))v for w in (36), we get

D(x)g(x)y(D2(z)D(w) +D2(w)D(z))vD(x)g(x)y{D2(z)D(w)

+D2(w)D(z)} = 0, v, w, x, y, z ∈ R.(37)

Since R is semiprime, we get from (37)

D(x)g(x)y(D2(z)D(w) +D2(w)D(z)) = 0, w, x, y, z ∈ R.(38)
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Putting wD(z) instead of for w in (38), we have

D(x)g(x)y{D2(z)D(w)D(z) +D2(z)wD2(z) +D2(w)D(z)2)

+ 2D(w)D2(z)D(z) + wD3(z)D(z)} = 0, w, x, y, z ∈ R.(39)

From (24), (38) and (39), we obtain

D(x)g(x)y{D2(z)wD2(z) + wD3(z)D(z)) = 0, w, x, y, z ∈ R.(40)

Writing D(z)w for w in (40), we get

D(x)g(x)y{D2(z)D(z)wD2(z) +D(z)wD3(z)D(z)) = 0, w, x, y, z ∈ R.(41)

From (24) and (41), we obtain

D(x)g(x)yD(z)wD3(z)D(z) = 0, w, x, y, z ∈ R.(42)

Replacing yD3(z) for y in (42), we get

D(x)g(x)yD3(z)D(z)wD3(z)D(z) = 0, w, x, y, z ∈ R.(43)

Substituting wD(x)g(x)y instead of for w in (43), we have

D(x)g(x)yD3(z)D(z)wD(x)g(x)yD3(z)D(z) = 0, w, x, y, z ∈ R.(44)

Since R is semiprime, it follows from (44) that

D(x)g(x)yD3(z)D(z) = 0, x, y, z ∈ R.(45)

From (40) and (45), we obtain

D(x)g(x)yD2(z)wD2(z) = 0, w, x, y, z ∈ R.(46)

Substituting wD(x)g(x)y for w in (46), we get

D(x)g(x)yD2(z)wD(x)g(x)yD2(z) = 0, w, x, y, z ∈ R.(47)

Since R is semiprime, it follows from (47) that

D(x)g(x)yD2(z) = 0, x, y, z ∈ R.(48)

Replacing zw for z in (48), we get

D(x)g(x)y(D2(z)w + 2D(z)D(w) + zD2(w)) = 0, w, x, y, z ∈ R.(49)

From (48) and (49), we obtain

2D(x)g(x)yD(z)D(w) = 0, w, x, y, z ∈ R.(50)

Since R is 3!-torsionfree, it follows from (50) that

D(x)g(x)yD(z)D(w) = 0, x, y, z ∈ R.(51)

Writing wz for w in (51), we get

D(x)g(x)y{D(z)D(w)z +D(z)wD(z)) = 0, w, x, y, z ∈ R.(52)

From (51) and (52), we obtain

D(x)g(x)yD(z)wD(z) = 0, w, x, y, z ∈ R.(53)
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Substituting wD(x)g(x)y for w in (53), we get

D(x)g(x)yD(z)wD(x)g(x)yD(z) = 0, w, x, y, z ∈ R.(54)

Since R is semiprime, it follows from (54) that

D(x)g(x)yD(z) = 0, x, y, z ∈ R.(55)

Right multiplication of (55) by g(x) leads to

D(x)g(x)yD(z)g(z) = 0, x, y, z ∈ R.(56)

Since R is semiprime, we obtain from (56)

D(x)g(x) = 0, x ∈ R.(57) �

Using the same technique with necessary variations one can prove the fol-
lowing lemmas and statements Lemmas 3.4 and 3.5 without the proofs.

Lemma 3.4. Let R be a 5!-torsion free semiprime ring. Let D : R −→ R be a
Jordan derivation on R. Assume that

g(x)D(x)yD2(x)D(x) = [f(x), x]D(x)yD2(x)D(x) = 0

for all x, y ∈ R. Then we have g(x)D(x) = [f(x), x]D(x) = 0 for all x ∈ R.

Lemma 3.5. Let R be a 3!-torsion free semiprime ring. Let D : R −→ R be a
Jordan derivation on R. Assume that

D(x)D2(x)yD(x)g(x) = D(x)D2(x)yD(x)[f(x), x] = 0

for all x, y ∈ R. Then we have D(x)g(x) = D(x)[f(x), x] = 0 for all x ∈ R.

Lemma 3.6. Let R be a 3!-torsion free semiprime ring. Let D : R −→ R be a
Jordan derivation on R. Assume that

D(x)D2(x)yg(x)D(x) = D(x)D2(x)y[f(x), x]D(x) = 0

for all x, y ∈ R. Then we have g(x)D(x) = [f(x), x]D(x) = 0 for all x ∈ R.

Proof. In the commutative case of R, we see that if f(x) = [D(x), x] = 0 for
all x ∈ R. Hence it is clear that D(x)g(x) = D(x)[f(x), x] = 0 for all x ∈ R. It
is sufficient to prove the above statement in the noncommutative case of R.

By Theorem 2.2, we can see that D is a derivation on R.
In any semiprime ring, we see that ayb = 0 ⇐⇒ bya = 0 for all y ∈ R.

Thus it follows that

D(x)D2(x)yg(x)D(x) = 0 ⇐⇒ g(x)D(x)yD(x)D2(x) = 0, x ∈ R.
Hence we may assume that

g(x)D(x)yD(x)D2(x) = [f(x), x]D(x)yD(x)D2(x) = 0, x ∈ R.(58)

Writing x+ tz for x in (58), we get

[[D(x+ tz), x+ tz], x+ tz]D(x+ tz)yD(x+ tz)D2(x+ tz)

≡ g(x)D(x)yD(x)D2(x) + t{([B(x, z), x] + [f(x), z]))D(x)
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+ g(x)D(z))yD(x)D2(x) + g(x)D(x)y(D(z)D2(x) +D(x)D2(z))}
+ t2N1(x, y, z) + t3N2(x, y, z) + t4N3(x, y, z) + t5N4(x, y, z)

+ t6g(z)D(z)yD(z)D2(z) = 0, x, y, z ∈ R, t ∈ S5,(59)

where N1, N2, N3 and N4 denote the term satisfying the identity (59).
From (58) and (59), we obtain

t{([B(x, z), x] + [f(x), z]))D(x)

+ g(x)D(z))yD(x)D2(x) + g(x)D(x)y(D(z)D2(x) +D(x)D2(z))}
+ t2N1(x, y, z) + t3N2(x, y, z) + t4N3(x, y, z) + t5N4(x, y, z)

= 0, x, y, z ∈ R, t ∈ S5.(60)

Since R is 5!-torsion free, by Lemma 2.1 the relation (60) yields

([B(x, z), x] + [f(x), z]))D(x) + g(x)D(z))yD(x)D2(x)

+ g(x)D(x)y(D(z)D2(x) +D(x)D2(z)) = 0, x, y, z ∈ R.(61)

Writing wg(x)D(x)y for y in (61), we get

([B(x, z), x] + [f(x), z]))D(x) + g(x)D(z))wg(x)D(x)yD(x)D2(x)

+ g(x)D(x)wg(x)D(x)y(D(z)D2(x) +D(x)D2(z)) = 0, x, y, z ∈ R.(62)

From (58) and (62),

g(x)D(x)wg(x)D(x)y(D(z)D2(x) +D(x)D2(z)) = 0, x, y, z ∈ R.(63)

Replacing y(D(z)D2(x) +D(x)D2(z))w for w in (63), we get

g(x)D(x)y(D(z)D2(x) +D(x)D2(z))wg(x)D(x)y{D(z)D2(x)

+D(x)D2(z)} = 0, x, y, z ∈ R.(64)

Since R is semiprime, we get from (64)

g(x)D(x)y(D(z)D2(x) +D(x)D2(z)) = 0, x, y, z ∈ R.(65)

Writing x+ tw for x in (31), we get

[f(x+ tw), x+ tw]D(x+ tw)y(D(z)D2(x+ tw) +D(x+ tw)D2(z))

≡ g(x)D(x)y(D(z)D2(x) +D(x)D2(z)) + t{D(w)g(x) + ([B(x,w), x]

+ [f(x), w])D(x) + g(x)D(w))y(D(z)D2(x) +D(x)D2(z))

+ g(x)D(x)y(D(z)D2(w)+D(w)D2(z))}+t2P1(x, y, z)+t3P2(x, y, z)

+ t4P3(x, y, z) + t5g(w)D(w)y(D(z)D2(w) +D(w)D2(z))

= 0, x, y, z ∈ R, t ∈ S5,(66)

where P1, P2 and P3 denote the term satisfying the identity (66).
From (65) and (66), we obtain

t{([B(x,w), x] + [f(x), w])D(x)
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+ g(x)D(w))y(D(z)D2(x) +D(x)D2(z)) + g(x)D(x)y(D(z)D2(w)

+D(w)D2(z))}+ t2P1(x, y, z) + t3P2(x, y, z)

+ t4P3(x, y, z) = 0, w, x, y, z ∈ R, t ∈ S5.(67)

Since R is 5!-torsion free, by Lemma 2.1 the relation (67) yields

([B(x,w), x] + [f(x), w])D(x)

+ g(x)D(w))y(D(z)D2(x) +D(x)D2(z)) + g(x)D(x)y(D(z)D2(w)

+D(w)D2(z)) = 0, w, x, y, z ∈ R.(68)

Writing vg(x)D(x)y for y in (68), we get

([B(x,w), x] + [f(x), w])D(x)

+ g(x)D(w))vg(x)D(x)y(D(z)D2(x) +D(x)D2(z))

+ g(x)D(x)vg(x)D(x)y(D(z)D2(w) +D(w)D2(z)) = 0, w, x, y, z ∈ R.(69)

From (65) and (69),

g(x)D(x)vg(x)D(x)y(D(z)D2(w) +D(w)D2(z)) = 0, v, w, x, y, z ∈ R.(70)

Replacing y(D(z)D2(w) +D(w)D2(z))v for v in (70), we get

g(x)D(x)y(D(z)D2(w) +D(w)D2(z))vg(x)D(x)y{D(z)D2(w)

+D(w)D2(z)} = 0, v, w, x, y, z ∈ R.(71)

Since R is semiprime, we get from (71)

g(x)D(x)y(D(z)D2(w) +D(w)D2(z)) = 0, w, x, y, z ∈ R.(72)

Putting D(z)w instead of for w in (72), we have

g(x)D(x)y{D(z)2D2(w) + 2D(z)D2(z)w +D(z)D3(z)w

+D(z)D(w)D2(z) +D2(z)wD2(z)} = 0, w, x, y, z ∈ R.(73)

From (58), (72) and (73), we obtain

g(x)D(x)y{D(z)D3(z)w +D2(z)wD2(z)} = 0, w, x, y, z ∈ R.(74)

Writing wD(z) for w in (74), we get

g(x)D(x)y{D(z)D3(z)wD(z) +D2(z)wD(z)D2(z)} = 0, w, x, y, z ∈ R.(75)

From (58) and (75), we obtain

g(x)D(x)yD(z)D3(z)wD(z) = 0, w, x, y, z ∈ R.(76)

Right multiplication of (76) by g(x) leads to

g(x)D(x)yD(z)D3(z)wD(z)D3(z) = 0, w, x, y, z ∈ R.(77)

Substituting wg(x)D(x)y for w in (77), we have

g(x)D(x)yD(z)D3(z)wg(x)D(x)yD(z)D3(z) = 0, w, x, y, z ∈ R.(78)
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Since R is semiprime, it follows from (78) that

g(x)D(x)yD(z)D3(z) = 0, x, y, z ∈ R.(79)

From (74) and (79), we obtain

g(x)D(x)yD2(z)wD2(z) = 0, w, x, y, z ∈ R.(80)

Substituting wg(x)D(x)y for w in (80), we get

g(x)D(x)yD2(z)wg(x)D(x)yD2(z) = 0, w, x, y, z ∈ R.(81)

Since R is semiprime, it follows from (81) that

g(x)D(x)yD2(z) = 0, x, y, z ∈ R.(82)

Replacing xz for z in (82), we get

D(x)g(x)y(xD2(z)w + 2D(x)D(z) +D2(x)z) = 0, x, y, z ∈ R.(83)

From (82) and (83), we obtain

2g(x)D(x)yD(x)D(z) = 0, x, y, z ∈ R.(84)

Since R is 3!-torsion free, it follows from (84) that

g(x)D(x)yD(x)D(z) = 0, x, y, z ∈ R.(85)

Writing zx for z in (85), we get

g(x)D(x)y{D(x)D(z)x+D(x)zD(x)) = 0, x, y, z ∈ R.(86)

From (85) and (86), we obtain

g(x)D(x)yD(x)zD(x) = 0, x, y, z ∈ R.(87)

Substituting zg(x)D(x)y for z in (87), we get

g(x)D(x)yD(x)zg(x)D(x)yD(x) = 0, x, y, z ∈ R.(88)

Since R is semiprime, it follows from (88) that

g(x)D(x)yD(x) = 0, x, y, z ∈ R.(89)

Putting yg(x) for y in (89), we get

g(x)D(x)yg(x)D(x) = 0, x, y ∈ R.(90)

Since R is semiprime, we obtain from (90)

g(x)D(x) = 0, x ∈ R.(91) �

Theorem 3.7. Let R be a 5!-torsion free semiprime ring. Let D : R −→ R be
a Jordan derivation on R. Then

[D(x), x]D(x)2 = 0 ⇔ D(x)2[D(x), x] = 0

for every x ∈ R.
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Proof. The proof of the commutative case is trivial. Thus it suffices to prove
the case that R is noncommutative.

Necessity: Assume that

[D(x), x]D(x)2 = f(x)D(x)2 = 0, x ∈ R.(92)

Replacing x+ ty for x in (92), we have

[D(x+ ty), x+ ty]D(x+ ty)2

≡ f(x)D(x)2 + t{B(x, y)D(x)2 + f(x)D(y)D(x) + f(x)D(x)D(y)}
+ t2H1(x, y) + t3H2(x, y) + t4f(y)D(y)2 = 0, x, y ∈ R, t ∈ S3,(93)

where H1, H2 denote the term satisfying the identity (93).
From (92) and (93), we obtain

t{B(x, y)D(x)2 + f(x)D(y)D(x) + f(x)D(x)D(y)}
+ t2H1(x, y) + t3H2(x, y) = 0, x, y ∈ R, t ∈ S5.(94)

Since R is 5!-torsion free, by Lemma 2.1 the relation (94) yields

B(x, y)D(x)2 + f(x)D(y)D(x) + f(x)D(x)D(y) = 0, x, y ∈ R.(95)

Writing xy for y in (95), we have

xB(x, y)D(x)2 + 2f(x)yD(x)2 +D(x)[y, x]D(x)2

+ f(x)xD(y)D(x) + f(x)D(x)yD(x) + f(x)D(x)xD(y)

+ f(x)D(x)2y = 0, x, y ∈ R.(96)

Left multiplication of (95) by x leads to

xB(x, y)D(x)2 + xf(x)D(y)D(x) + xf(x)D(x)D(y) = 0, x, y ∈ R.(97)

From (96) and (97), we obtain

2f(x)yD(x)2 +D(x)[y, x]D(x)2 + g(x)D(y)D(x)

+ f(x)D(x)yD(x) + {g(x)D(x) + f(x)2}D(y)

+ f(x)D(x)2y = 0, x, y ∈ R.(98)

From (92) and (98), we obtain

2f(x)yD(x)2 +D(x)[y, x]D(x)2 + g(x)D(y)D(x)

+ f(x)D(x)yD(x) + {g(x)D(x) + f(x)2}D(y) = 0, x, y ∈ R.(99)

Writing yD(x) for y in (99), we have

2f(x)yD(x)3+D(x)[y, x]D(x)3+D(x)yf(x)D(x)2+g(x)D(y)D(x)2

+ g(x)yD2(x)D(x)+f(x)D(x)yD(x)2+{g(x)D(x) + f(x)2}D(y)D(x)

+ {g(x)D(x) + f(x)2}yD2(x) = 0, x, y ∈ R.(100)
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Right multiplication of (99) by D(x) leads to

2f(x)yD(x)3 +D(x)[y, x]D(x)3 + g(x)D(y)D(x)2

+ f(x)D(x)yD(x)2 + {g(x)D(x) + f(x)2}D(y)D(x) = 0, x, y ∈ R.(101)

From (100) and (101), we obtain

D(x)yf(x)D(x)2 + g(x)yD2(x)D(x)

+ {g(x)D(x) + f(x)2}yD2(x) = 0, x, y ∈ R.(102)

From (92) and (102), we obtain

g(x)yD2(x)D(x) + {g(x)D(x) + f(x)2}yD2(x) = 0, x, y ∈ R.(103)

On the other hand, we get from (92)

0 = [f(x)D(x)2, x]

= g(x)D(x)2 + f(x)2D(x) + f(x)D(x)f(x), x ∈ R.(104)

On the one hand, let y = x2 in (95). Then we obtain

0 = B(x, x2)D(x)2 + f(x)D(x2)D(x) + f(x)D(x)D(x2)

= 2(f(x)x+ xf(x))D(x)2 + f(x)(D(x)x+ xD(x))D(x)

+ f(x)D(x)(D(x)x+ xD(x))

= 3f(x)xD(x)2+2xf(x)D(x)2+2f(x)D(x)xD(x)+f(x)D(x)2x, x∈R.(105)

From (92) and (105), we obtain

3f(x)xD(x)2 + 2xf(x)D(x)2 + 2f(x)D(x)xD(x) + f(x)D(x)2x

= 0, x ∈ R.(106)

Since 3xf(x)D(x)2 = 0, 2xf(x)D(x)2 = 0 holds for all x ∈ R from (92), we get
from (106)

0 = 3g(x)D(x)2 + 2(g(x)D(x) + f(x)2)D(x)

= 5g(x)D(x)2 + 2f(x)2D(x), x ∈ R.(107)

Substituting D(x)y for y in (107), we have

g(x)D(x)yD2(x)D(x)+{g(x)D(x)2+f(x)2D(x)}yD2(x) = 0, x, y ∈ R.(108)

From (104) and (108), we obtain

g(x)D(x)yD2(x)D(x)− f(x)D(x)f(x)yD2(x) = 0, x, y ∈ R.(109)

Replacing D(x)2y for y in (109), we get

g(x)D(x)3yD2(x)D(x)− f(x)D(x)f(x)D(x)2yD2(x) = 0, x, y ∈ R.(110)

From (92) and (110), it follows that

g(x)D(x)3yD2(x)D(x) = 0, x, y ∈ R.(111)
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Putting D(x)y instead of y in (108), we arrive at

g(x)D(x)2yD2(x)D(x)+{g(x)D(x)3+f(x)2D(x)2}yD2(x)=0, x, y∈R.(112)

From (92), (111) and (112), one obtains

g(x)D(x)2yD2(x)D(x) = 0, x, y ∈ R.(113)

Substituting 2yD2(x)D(x)z for y in (108), we have

2g(x)D(x)yD2(x)D(x)zD2(x)D(x)

+ {2g(x)D(x)2 + 2f(x)2D(x)}yD2(x)D(x)zD2(x) = 0, x, y, z ∈ R.(114)

From (113) and (114), we get

2g(x)D(x)yD2(x)D(x)zD2(x)D(x)

+ 2f(x)2D(x)yD2(x)D(x)zD2(x) = 0, x, y, z ∈ R.(115)

From (107) and (115),

2g(x)D(x)yD2(x)D(x)zD2(x)D(x)

− 5g(x)D(x)2yD2(x)D(x)zD2(x) = 0, x, y, z ∈ R.(116)

From (113) and (116), we arrive at

2g(x)D(x)yD2(x)D(x)zD2(x)D(x) = 0, x, y, z ∈ R.(117)

Since R is 3!-torsion free, it follows from (117) that

g(x)D(x)yD2(x)D(x)zD2(x)D(x) = 0, x, y, z ∈ R.(118)

Replacing zg(x)D(x)y for z in (118), we obtain

g(x)D(x)yD2(x)D(x)zg(x)D(x)yD2(x)D(x) = 0, x, y, z ∈ R.(119)

By the semiprimeness of R, we get from (119)

g(x)D(x)yD2(x)D(x) = 0, x, y ∈ R.(120)

Substituting D(x)y for y in (99), we have

2f(x)D(x)yD(x)2 +D(x)2[y, x]D(x)2 +D(x)f(x)yD(x)2

+ g(x)D(x)D(y)D(x) + g(x)D2(x)yD(x) + f(x)D(x)2yD(x)

+ {g(x)D(x)2+f(x)2D(x)}D(y)+{g(x)D(x)D2(x)+f(x)2D2(x)}y
= 0, x, y ∈ R.(121)

Left multiplication of (99) by D(x) leads to

2D(x)f(x)yD(x)2 +D(x)2[y, x]D(x)2 +D(x)g(x)D(y)D(x)

+D(x)f(x)D(x)yD(x) + {D(x)g(x)D(x) +D(x)f(x)2}D(y)

= 0, x, y ∈ R.(122)

From (121) and (122), we obtain

{2f(x)D(x)−D(x)f(x)}yD(x)2
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+ {g(x)D(x)−D(x)g(x)}D(y)D(x) + g(x)D2(x)yD(x)

+ {f(x)D(x)2 −D(x)f(x)D(x)}yD(x)

+ {g(x)D(x)2 + f(x)2D(x)−D(x)g(x)D(x)−D(x)f(x)2}D(y)

+ {g(x)D(x)D2(x) + f(x)2D2(x)}y = 0, x, y ∈ R.(123)

From (92) and (123), we obtain

{2f(x)D(x)−D(x)f(x)}yD(x)2

+ {g(x)D(x)−D(x)g(x)}D(y)D(x) + g(x)D2(x)yD(x)

−D(x)f(x)D(x)yD(x)

+ {g(x)D(x)2 + f(x)2D(x)−D(x)g(x)D(x)−D(x)f(x)2}D(y)

+ {g(x)D(x)D2(x) + f(x)2D2(x)}y = 0, x, y ∈ R.(124)

Writing yD(x) for y in (124), we have

{2f(x)D(x)−D(x)f(x)}yD(x)3

+ {g(x)D(x)−D(x)g(x)}D(y)D(x)2

+ {g(x)D(x)−D(x)g(x)}yD2(x)D(x)

+ g(x)D2(x)yD(x)2 −D(x)f(x)D(x)yD(x)2

+ {g(x)D(x)2 + f(x)2D(x)−D(x)g(x)D(x)−D(x)f(x)2}D(y)D(x)

+ {g(x)D(x)D2(x) + f(x)2D2(x)}yD(x) = 0, x, y ∈ R.(125)

Right multiplication of (124) by D(x) leads to

{2f(x)D(x)−D(x)f(x)}yD(x)3

+ {g(x)D(x)−D(x)g(x)}D(y)D(x)2 + g(x)D2(x)yD(x)2

−D(x)f(x)D(x)yD(x)2

+ {g(x)D(x)2 + f(x)2D(x)−D(x)g(x)D(x)−D(x)f(x)2}D(y)D(x)

+ {g(x)D(x)D2(x) + f(x)2D2(x)}yD(x) = 0, x, y ∈ R.(126)

From (125) and (126), we obtain

{g(x)D(x)−D(x)g(x)}yD2(x)D(x) = 0, x, y ∈ R.(127)

From (120) and (127), we obtain

D(x)g(x)yD2(x)D(x) = 0, x, y ∈ R.(128)

By Lemma 3.4, we get from (128)

D(x)g(x) = 0, x ∈ R.(129)

Hence by Lemma 3.2, we obtain from (129), we get

3D(x)2f(x)−D(x)f(x)D(x) = 0, x ∈ R.(130)
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Right multiplication of (107) by D(x) leads to

5g(x)D(x)3 + 2f(x)2D(x)2 = 0, x ∈ R.(131)

From (92) and (131), we obtain

5g(x)D(x)3 = 0, x ∈ R.(132)

Since R is 5!-torsion free, we get from (132)

g(x)D(x)3 = 0, x, y ∈ R.(133)

Replacing D(x)2y for y in (103), we have

g(x)D(x)2yD2(x)D(x)+{g(x)D(x)3+f(x)2D(x)2}yD2(x)=0, x, y∈R.(134)

From (92), (133) and (134), we obtain

g(x)D(x)2yD2(x)D(x) = 0, x, y ∈ R.(135)

Writing 2D(x)y for y in (103), we have

2g(x)D(x)yD2(x)D(x)+{2g(x)D(x)2+2f(x)2D(x)}yD2(x)=0, x, y∈R.(136)

From (107) and (136), we obtain

2g(x)D(x)yD2(x)D(x)− 3g(x)D(x)2yD2(x) = 0, x, y ∈ R.(137)

Replacing yD2(x)D(x)z for y in (137), we have

2g(x)D(x)yD2(x)D(x)zD2(x)D(x)

− 3g(x)D(x)2yD2(x)D(x)zD2(x) = 0, x, y, z ∈ R.(138)

From (135) and (138), we obtain

2g(x)D(x)yD2(x)D(x)zD2(x)D(x) = 0, x, y, z ∈ R.(139)

Since R is 5!-torsion free, we get from (139)

g(x)D(x)yD2(x)D(x)zD2(x)D(x) = 0, x, y, z ∈ R.(140)

Replacing zg(x)D(x)y for z in (140), we have

g(x)D(x)yD2(x)D(x)zg(x)D(x)yD2(x)D(x) = 0, x, y, z ∈ R.(141)

Since R is semiprime, it follows from (141) that

g(x)D(x)yD2(x)D(x) = 0, x, y ∈ R.(142)

By Lemma 3.3, we get from (142)

g(x)D(x) = 0, x ∈ R.(143)

Hence by Lemma 3.1, we obtain from (143), we get

3f(x)D(x)2 −D(x)f(x)D(x) = 0, x ∈ R.(144)

Thus combining (130) with (144), we have

3(f(x)D(x)2 −D(x)2f(x)2) = 0, x ∈ R.(145)
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Since R is 3!-torsion free, it follows from (145) that

f(x)D(x)2 −D(x)2f(x) = 0, x ∈ R.(146)

Thus from (92) and (146), we get

D(x)2f(x) = 0, x ∈ R.
Sufficiency: Assume that

D(x)2[D(x), x] = D(x)2f(x) = 0, x ∈ R.(147)

Replacing x+ ty for x in (147), we have

D(x+ ty)2[D(x+ ty), x+ ty]

≡ D(x)2f(x) + t{D(y)D(x)f(x) +D(x)D(y)f(x) +D(x)2B(x, y)}
+ t2Q1(x, y) + t3Q2(x, y) + t4D(y)2f(y) = 0, x, y ∈ R, t ∈ S3,(148)

where Q1 and Q2 denote the term satisfying the identity (148).
From (147) and (148), we obtain

t{D(y)D(x)f(x) +D(x)D(y)f(x) +D(x)2B(x, y)}
+ t2P1(x, y) + t3P2(x, y) = 0, x, y ∈ R, t ∈ S3.(149)

Since R is 3!-torsion free, by Lemma 2.1 the relation (149) yields

D(y)D(x)f(x) +D(x)D(y)f(x) +D(x)2B(x, y) = 0, x, y ∈ R.(150)

Right multiplication of (150) by x leads to

D(y)D(x)f(x)x+D(x)D(y)f(x)x+D(x)2B(x, y)x = 0, x, y ∈ R.(151)

Substituting yx for y in (150), we have

D(y)xD(x)f(x) + yD(x)2f(x) +D(x)D(y)xf(x) +D(x)yD(x)f(x)

+D(x)2B(x, y)x+ 2D(x)2yf(x) +D(x)2[y, x]D(x) = 0, x, y ∈ R.(152)

From (151) and (152), we obtain

D(y){f(x)2 +D(x)g(x)} − yD(x)2f(x)−D(x)yD(x)f(x)

+D(x)D(y)g(x)− 2D(x)2yf(x)−D(x)2[y, x]D(x) = 0, x, y ∈ R.(153)

From (147) and (153), we obtain

D(y){f(x)2 +D(x)g(x)} −D(x)yD(x)f(x) +D(x)D(y)g(x)

− 2D(x)2yf(x)−D(x)2[y, x]D(x) = 0, x, y ∈ R.(154)

On the one hand, let y = x2 in (150). Then we arrive at

0 = D(x2)D(x)f(x) +D(x)D(x2)f(x) +D(x)2B(x, x2)

= {D(x)x+ xD(x)}D(x)f(x) +D(x){D(x)x+ xD(x)}f(x)

+ 2D(x)2{f(x)x+ xf(x)}
= D(x)xD(x)f(x) + xD(x)2f(x) +D(x)2xf(x) +D(x)xD(x)f(x)
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+ 2D(x)2{f(x)x+ xf(x)}
= D(x)xD(x)f(x) + xD(x)2f(x) +D(x)2xf(x) +D(x)xD(x)f(x)

+ 2D(x)2f(x)x+ 2D(x)2xf(x)

= 2D(x)xD(x)f(x)+xD(x)2f(x)+3D(x)2xf(x)+2D(x)2f(x)x, x ∈ R.(155)

From (147) and (155), we obtain

2D(x)xD(x)f(x) + 3D(x)2xf(x) = 0, x ∈ R.(156)

From (147) and (156), we have

0 = −{2D(x)[x,D(x)f(x)] + 3D(x)2[x, f(x)]}
= 2D(x)f(x)2 + 2D(x)2g(x) + 3D(x)2g(x)

= 2D(x)f(x)2 + 5D(x)2g(x), x ∈ R.(157)

Writing D(x)y for y in (154), we have

D(x)D(y){f(x)2 +D(x)g(x)}+D2(x)y{f(x)2 +D(x)g(x)}
−D(x)2yD(x)f(x) +D(x)2D(y)g(x) +D(x)D2(x)yg(x)

− 2D(x)3yf(x)−D(x)3[y, x]D(x)−D(x)2f(x)yD(x) = 0, x, y ∈ R.(158)

Left multiplication of (154) by D(x) leads to

D(x)D(y){f(x)2 +D(x)g(x)} −D(x)2yD(x)f(x) +D(x)2D(y)g(x)

− 2D(x)3yf(x)−D(x)3[y, x]D(x) = 0, x, y ∈ R.(159)

From (158) and (159), we obtain

D2(x)y{f(x)2 +D(x)g(x)}+D(x)D2(x)yg(x)

−D(x)2f(x)yD(x) = 0, x, y ∈ R.(160)

From (147) and (160), we obtain

D2(x)y{f(x)2 +D(x)g(x)}+D(x)D2(x)yg(x) = 0, x, y ∈ R.(161)

Putting 2D(x)y instead of y in (161), we have

D2(x)y{2D(x)f(x)2+2D(x)2g(x)}+2D(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(162)

From (157) and (162), we obtain

−3D2(x)yD(x)2g(x) + 2D(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(163)

Left multiplication of (157) by D(x) yields

2D(x)2f(x)2 + 5D(x)3g(x) = 0, x ∈ R.(164)

From (147) and (164), we have

5D(x)3g(x) = 0, x ∈ R.(165)

Since R is 5! torsion free, it follows from (165) that

D(x)3g(x) = 0, x ∈ R.(166)
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Replacing yD(x) for y in (163), we have

−3D2(x)yD(x)3g(x) + 2D(x)D2(x)yD(x)2g(x) = 0, x, y ∈ R.(167)

From (166) and (167), we have

2D(x)D2(x)yD(x)2g(x) = 0, x ∈ R.(168)

Since R is 5! torsion free, it follows from (168) that

D(x)D2(x)yD(x)2g(x) = 0, x ∈ R.(169)

Replacing zD(x)D2(x)y for y in (163), we obtain

− 3D2(x)zD(x)D2(x)yD(x)2g(x)

+ 2D(x)D2(x)zD(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(170)

From (169) and (170), we have

2D(x)D2(x)zD(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(171)

Since R is 5! torsion free, we get from (171)

D(x)D2(x)zD(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(172)

Substituting yD(x)g(x)z for z in (172), we obtain

D(x)D2(x)yD(x)g(x)zD(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(173)

By the semiprimeness of R, it follows from (173) that

D(x)D2(x)yD(x)g(x) = 0, x, y ∈ R.(174)

Thus by Lemma 3.4, we get from (174)

D(x)g(x) = 0, x ∈ R.(175)

Hence by Lemma 3.2, we have from (175)

3D(x)2f(x)−D(x)f(x)D(x) = 0, x ∈ R.(176)

From (147) and (176), we get

D(x)f(x)D(x) = 0, x ∈ R.(177)

From (177), we get

0 = [D(x)f(x)D(x), x]

= f(x)2D(x) +D(x)g(x)D(x) +D(x)f(x)2, x ∈ R.(178)

From (175) and (178), we get

f(x)2D(x) +D(x)f(x)2 = 0, x ∈ R.(179)

From (161) and (175), we obtain

D2(x)yf(x)2 +D(x)D2(x)yg(x) = 0, x, y ∈ R.(180)

From (157) and (175), we have

2D(x)f(x)2 = 0, x ∈ R.(181)
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Since R is 5! torsion free, we get from (181)

D(x)f(x)2 = 0, x ∈ R.(182)

From (179) and (182), we have

f(x)2D(x) = 0, x ∈ R.(183)

Right multiplication of (180) by D(x) yields

D2(x)yf(x)2D(x) +D(x)D2(x)yg(x)D(x) = 0, x, y ∈ R.(184)

From (183) and (184), we have

D(x)D2(x)yg(x)D(x) = 0, x ∈ R.(185)

Thus Lemma 3.3, (185) yields

g(x)D(x) = 0, x ∈ R.(186)

By Theorem 3.1, we obtain from (186)

3f(x)D(x)2 −D(x)f(x)D(x) = 0, x ∈ R.(187)

From (176) and (187), we obtain

3(f(x)D(x)2 −D(x)2f(x)) = 0, x ∈ R.(188)

Since R is 5! torsion free, we get from (188)

f(x)D(x)2 −D(x)2f(x) = 0, x ∈ R.(189)

From (147) and (189), we get

f(x)D(x)2 = 0, x ∈ R. �

Remark 3.8. Let R be a 3!-torsion free semiprime ring. Let D : R −→ R be a
Jordan derivation on R. In this case, by some calculations, it is checked that if
[D(x), x]D(x)2 = 0 for every x ∈ R, then f(x) = [D(x), x] = 0 for all x ∈ R.

The following theorem is nearly proved by the same arguments as in the
proof of J. Vukman’s theorem [17].

Theorem 3.9. Let A be a Banach algebra with rad(A). Let D : A −→ A be a
continuous linear Jordan derivation. In this case, we show that

[D(x), x]D(x)2 ∈ rad(A) ⇐⇒ D(x)2[D(x), x] ∈ rad(A)

for every x ∈ A.

Proof. It suffices to prove the case that A is noncommutative. By the result
of B. E. Johnson and A. M. Sinclair [5] any linear derivation on a semisimple
Banach algebra is continuous. Sinclair [9] has proved that every continuous
linear Jordan derivation on a Banach algebra leaves the primitive ideals of A
invariant. Hence for any primitive ideals P ⊂ A one can introduce a derivation
DP : A/P −→ A/P, where A/P is a prime and factor Banach algebra, by
DP (x̂) = D(x) + P, x̂ = x + P. We see that if [D(x), x]D(x)2 ∈ rad(A),
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we obtain [D(x), x]D(x)2 ∈ rad(A) ⊂ P for all primitive ideals of A, then

[DP (x̂), x̂](DP (x̂))2 = 0̂. Then since A/P is a prime factor Banach algebra
for all primitive ideals of A, by Theorem 3.7, we get [DP (x̂), x̂](DP (x̂))2 =

0̂ ⇐⇒ (DP (x̂))2[DP (x̂), x̂] = 0̂, x̂ ∈ A/P for all primitive ideals of A. Hence
we conclude that D(x)2[D(x), x] ∈ P for all x ∈ A and for all primitive ideals
P of A. Therefore since rad(A) = ∩{P : P is any primitive ideals of A}, it
follows that

[D(x), x]D(x)2 ∈ rad(A) ⇐⇒ D(x)2[D(x), x] ∈ rad(A)

for every x ∈ A. �

As a special case of Theorem 3.9 we get the following result which charac-
terizes commutative semisimple Banach algebras.

Corollary 3.10. Let A be a semisimple Banach algebra. Suppose

[[y, x], x]][y, x]2 = 0 ⇐⇒ [y, x]2[[y, x], x] = 0

for every x, y ∈ A.

Proof. Let δy(x) = [y, x], [[y, x], x] = [δy(x), x], D = δy for all x, y ∈ R. Hence
we see that δy is a continuous (Jordan) derivation on A. Since A is semisimple,
rad(A) = (0). Thus all the conditions of Theorem 3.10 are fulfilled. �
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