• Title/Summary/Keyword: fractional-N

Search Result 276, Processing Time 0.019 seconds

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ-Δ Fractional-N Frequency Synthesizers

  • Chen, Zuow-Zun;Lee, Tai-Cheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • A multiphase compensation method with mismatch linearization technique, is presented and demonstrated in a $\Sigma-\Delta$ fractional-N frequency synthesizer. An on-chip delay-locked loop (DLL) and a proposed delay line structure are constructed to provide multiphase compensation on $\Sigma-\Delta$ quantizetion noise. In the delay line structure, dynamic element matching (DEM) techniques are employed for mismatch linearization. The proposed $\Sigma-\Delta$ fractional-N frequency synthesizer is fabricated in a $0.18-{\mu}m$ CMOS technology with 2.14-GHz output frequency and 4-Hz resolution. The die size is 0.92 mm$\times$1.15 mm, and it consumes 27.2 mW. In-band phase noise of -82 dBc/Hz at 10 kHz offset and out-of-band phase noise of -103 dBc/Hz at 1 MHz offset are measured with a loop bandwidth of 200 kHz. The settling time is shorter than $25{\mu}s$.

TAYLORS SERIES IN TERMS OF THE MODIFIED CONFORMABLE FRACTIONAL DERIVATIVE WITH APPLICATIONS

  • Mohammed B. M. Altalla;B. Shanmukha;Ahmad El-Ajou;Mohammed N. A. Alkord
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.435-450
    • /
    • 2024
  • This study depends on the modified conformable fractional derivative definition to generalize and proves some theorems of the classical power series into the fractional power series. Furthermore, a comprehensive formulation of the generalized Taylor's series is derived within this context. As a result, a new technique is introduced for the fractional power series. The efficacy of this new technique has been substantiated in solving some fractional differential equations.

$3^{n-p}$ Fractional Factorial Desig Excluded A Debarred Combination (실험불가능한 처리조합이 배제되는 $3^{n-p}$ 일부실시법)

  • 최병철;최승현
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.303-315
    • /
    • 1998
  • In a factorial experiment, certain combinations of factor levels clay not be ruled out for operational or economical reason. A fractional factorial design that contains such infeasible combinations, called debarred combinations, becomes too unbalanced to estimate the required effects. This thesis presents a method of selecting defining contrasts for constructing regular $3^{n-p}$ fractional factorial design which does not contain a debarred combination. Consequently, the construction of the design is accomplished by choosing the defining contrasts so that one of defining contrasts is compatible with a debarred combination.

  • PDF

RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY

  • Cao, Linfen;Wang, Xiaoshan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1449-1460
    • /
    • 2021
  • In this paper, we consider the following nonlocal fractional Laplacian equation with a singular nonlinearity (-∆)su(x) = λuβ (x) + a0u (x), x ∈ ℝn, where 0 < s < 1, γ > 0, $1<{\beta}{\leq}\frac{n+2s}{n-2s}$, λ > 0 are constants and a0 ≥ 0. We use a direct method of moving planes which introduced by Chen-Li-Li to prove that positive solutions u(x) must be radially symmetric and monotone increasing about some point in ℝn.

SYMMETRIC DUALITY FOR FRACTIONAL VARIATIONAL PROBLEMS WITH CONE CONSTRAINTS

  • Ahmad, I.;Yaqub, Mohd.;Ahmed, A.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.281-292
    • /
    • 2007
  • A pair of symmetric fractional variational programming problems is formulated over cones. Weak, strong, converse and self duality theorems are discussed under pseudoinvexity. Static symmetric dual fractional programs are included as special case and corresponding symmetric duality results are merely stated.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.

EXISTENCE AND UNIQUENESS RESULTS FOR SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INITIAL TIME DIFFERENCE

  • Nanware, J.A.;Dawkar, B.D.;Panchal, M.S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1035-1044
    • /
    • 2021
  • Existence and uniqueness results for solutions of system of Riemann-Liouville (R-L) fractional differential equations with initial time difference are obtained. Monotone technique is developed to obtain existence and uniqueness of solutions of system of R-L fractional differential equations with initial time difference.

Minimum Aberration $3^{n-k}$ Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.277-288
    • /
    • 1996
  • The minimum aberration criterion is commonly used for selecting good fractional factorial designs. In this paper we give same necessary conditions for $3^{n-k}$ fractional factorial designs. We obtain minimum aberration $3^{n-k}$ designs for k = 2 and any n. For k > 2, minimum aberration designs have not found yet. As an alternative, we select a design with minimum aberration among minimum-variance designs.

  • PDF

Design of a CMOS Frequency Synthesizer for FRS Band (UHF FRS 대역 CMOS PLL 주파수 합성기 설계)

  • Lee, Jeung-Jin;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.941-947
    • /
    • 2017
  • This paper reports a fractional-N phase-locked-loop(PLL) frequency synthesizer that is implemented in a $0.35-{\mu}m$ standard CMOS process and generates a quadrature signal for an FRS terminal. The synthesizer consists of a voltage-controlled oscillator(VCO), a charge pump(CP), loop filter(LF), a phase frequency detector(PFD), and a frequency divider. The VCO has been designed with an LC resonant circuit to provide better phase noise and power characteristics, and the CP is designed to be able to adjust the pumping current according to the PFD output. The frequency divider has been designed by a 16-divider pre-scaler and fractional-N divider based on the third delta-sigma modulator($3^{rd}$ DSM). The LF is a third-order RC filter. The measured results show that the proposed device has a dynamic frequency range of 460~510 MHz and -3.86 dBm radio-frequency output power. The phase noise of the output signal is -94.8 dBc/Hz, and the lock-in time is $300{\mu}s$.