• Title/Summary/Keyword: fractional number

Search Result 170, Processing Time 0.021 seconds

SOME RESULTS ON BINDING NUMBER AND FRACTIONAL PERFECT MATCHING

  • Zhu, Yan;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.339-344
    • /
    • 2007
  • The relationships between binding number and fractional edge (vertex)-deletability or fractional k-extendability of graphs are studied. Furthermore, we show that the result about fractional vertex-deletability are best possible.

The Educational Significance of the Method of Teaching Natural and Fractional Numbers by Measurement of Quantity (양의 측정을 통한 자연수와 분수 지도의 교수학적 의의)

  • 강흥규;고정화
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.385-399
    • /
    • 2003
  • In our present elementary mathematics curriculum, natural numbers are taught by using the a method of one-to-one correspondence or counting operation which are not related to measurement, and fractional numbers are taught by using a method which is partially related to measurement. The most serious limitation of these teaching methods is that natural numbers and fractional numbers are separated. To overcome this limitation, Dewey and Davydov insisted that the natural number and the fractional number should be taught by measurement of quantity. In this article, we suggested a method of teaching the natural number and the fractional number by measurement of quantity based on the claims of Dewey and Davydov, and compare it with our current method. In conclusion, we drew some educational implications of teaching the natural number and the fractional number by measurement of quantity as follows. First, the concepts of the natural number and the fractional number evolve from measurement of quantity. Second, the process of transition from the natural number to the fractional number became to continuous. Third, the natural number, the fractional number, and their lower categories are closely related.

  • PDF

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • ZHOU, SIZHONG;SUN, ZHIREN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.435-441
    • /
    • 2016
  • Let G be a graph, and let g, f be two nonnegative integer-valued functions defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G). A graph G is called a fractional (g, f, n)-critical graph if after deleting any n vertices of G the remaining graph of G admits a fractional (g, f)-factor. In this paper, we obtain a binding number condition for a graph to be a fractional (g, f, n)-critical graph, which is an extension of Zhou and Shen's previous result (S. Zhou, Q. Shen, On fractional (f, n)-critical graphs, Inform. Process. Lett. 109(2009)811-815). Furthermore, it is shown that the lower bound on the binding number condition is sharp.

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

A Case Study on Children's Informal Knowledge of the Fractional Multiplication (분수의 곱셈에서 비형식적 지식의 형식화 사례 연구)

  • Haek, Sun-Su;Kim, Won-Kyung
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.139-168
    • /
    • 2005
  • The purpose of this study is to investigate children's informal knowledge of the fractional multiplication and to develop a teaching material connecting the informal and the formal knowledge. Six lessons of the pre-teaching material are developed based on literature reviews and administered to the 7 students of the 4th grade in an elementary school. It is shown in these teaching experiments that children's informal knowledge of the fractional multiplication are the direct modeling of using diagram, mathematical thought by informal language, and the representation with operational expression. Further, teaching and learning methods of formalizing children's informal knowledge are obtained as follows. First, the informal knowledge of the repeated sum of the same numbers might be used in (fractional number)$\times$((natural number) and the repeated sum could be expressed simply as in the multiplication of the natural numbers. Second, the semantic meaning of multiplication operator should be understood in (natural number)$\times$((fractional number). Third, the repartitioned units by multiplier have to be recognized as a new units in (unit fractional number)$\times$((unit fractional number). Fourth, the partitioned units should be reconceptualized and the case of disjoint between the denominator in multiplier and the numerator in multiplicand have to be formalized first in (proper fractional number)$\times$(proper fractional number). The above teaching and learning methods are melted in the teaching meterial which is made with corrections and revisions of the pre-teaching meterial.

  • PDF

THE (k, s)-FRACTIONAL CALCULUS OF CLASS OF A FUNCTION

  • Rahman, G.;Ghaffar, A.;Nisar, K.S.;Azeema, Azeema
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • In this present paper, we deal with the generalized (k, s)-fractional integral and differential operators recently defined by Nisar et al. and obtain some generalized (k, s)-fractional integral and differential formulas involving the class of a function as its kernels. Also, we investigate a certain number of their consequences containing the said function in their kernels.

BALANCEDNESS AND CONCAVITY OF FRACTIONAL DOMINATION GAMES

  • Kim, Hye-Kyung;Fang Qizhi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.265-275
    • /
    • 2006
  • In this paper, we introduce a fractional domination game arising from fractional domination problems on graphs and focus on its balancedness and concavity. We first characterize the core of the fractional domination game and show that its core is always non-empty taking use of dual theory of linear programming. Furthermore we study concavity of this game.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang;Agarwal, Praveen
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.283-291
    • /
    • 2014
  • A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.